Principles and mechanisms of non-genetic resistance in cancer

被引:110
作者
Bell, Charles C. [1 ,2 ]
Gilan, Omer [1 ,2 ]
机构
[1] Peter MacCallum Canc Centre, Canc Res Div, Melbourne, Vic, Australia
[2] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Melbourne, Vic, Australia
基金
英国医学研究理事会;
关键词
BET BROMODOMAIN INHIBITORS; DRUG-RESISTANCE; GENE-EXPRESSION; ACQUIRED-RESISTANCE; CELL VARIABILITY; MEK INHIBITION; SINGLE CELLS; STEM-CELLS; HETEROGENEITY; EVOLUTION;
D O I
10.1038/s41416-019-0648-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
As well as undergoing genetic evolution, cancer cells can alter their epigenetic state to adapt and resist treatment. This non-genetic evolution is emerging as a major component of cancer resistance. Only now are we beginning to acquire the necessary data and tools to establish some of the underlying principles and mechanisms that define when, why and how non-genetic resistance occurs. Preliminary studies suggest that it can exist in a number of forms, including drug persistence, unstable non-genetic resistance and, most intriguingly, stable non-genetic resistance. Exactly how they each arise remains unclear; however, epigenetic heterogeneity and plasticity appear to be important variables. In this review, we provide an overview of these different forms of non-genetic resistance, before exploring how epigenetic heterogeneity and plasticity influence their emergence. We highlight the distinction between non-genetic Darwinian selection and Lamarckian induction and discuss how each is capable of generating resistance. Finally, we discuss the potential interaction between genetic and non-genetic adaptation and propose the idea of 'the path of most resistance', which outlines the variables that dictate whether cancers adapt through genetic and/or epigenetic means. Through these discussions, we hope to provide a conceptual framework that focuses future studies, whose insights might help prevent or overcome non-genetic resistance.
引用
收藏
页码:465 / 472
页数:8
相关论文
共 74 条
[1]   Enhancement of cellular memory by reducing stochastic transitions [J].
Acar, M ;
Becskei, A ;
van Oudenaarden, A .
NATURE, 2005, 435 (7039) :228-232
[2]   Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways [J].
Bai, Xue ;
Fisher, David E. ;
Flaherty, Keith T. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (09) :549-562
[3]   Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia [J].
Bell, Charles C. ;
Fenne, Katie A. ;
Chan, Yih-Chih ;
Rambow, Florian ;
Yeung, Miriam M. ;
Vassiliadis, Dane ;
Lara, Luis ;
Yeh, Paul ;
Martelotto, Luciano G. ;
Rogiers, Aljosja ;
Kremer, Brandon E. ;
Barbash, Olena ;
Mohammad, Helai P. ;
Johanson, Timothy M. ;
Burr, Marian L. ;
Dhar, Arindam ;
Karpinich, Natalie ;
Tian, Luyi ;
Tyler, Dean S. ;
MacPherson, Laura ;
Shi, Junwei ;
Pinnawala, Nathan ;
Fong, Chun Yew ;
Papenfuss, Anthony T. ;
Grimmond, Sean M. ;
Dawson, Sarah-Jane ;
Allan, Rhys S. ;
Kruger, Ryan G. ;
Vakoc, Christopher R. ;
Goode, David L. ;
Naik, Shalin H. ;
Gilan, Omer ;
Lam, Enid Y. N. ;
Marine, Jean-Christophe ;
Prinjha, Rab K. ;
Dawson, Mark A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels [J].
Bengtsson, M ;
Ståhlberg, A ;
Rorsman, P ;
Kubista, M .
GENOME RESEARCH, 2005, 15 (10) :1388-1392
[5]   A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition [J].
Biehs, Brian ;
Dijkgraaf, Gerrit J. P. ;
Piskol, Robert ;
Alicke, Bruno ;
Boumahdi, Soufiane ;
Peale, Franklin ;
Gould, Stephen E. ;
de Sauvage, Frederic J. .
NATURE, 2018, 562 (7727) :429-+
[6]   Dynamics of epigenetic regulation at the single-cell level [J].
Bintu, Lacramioara ;
Yong, John ;
Antebi, Yaron E. ;
McCue, Kayla ;
Kazuki, Yasuhiro ;
Uno, Narumi ;
Oshimura, Mitsuo ;
Elowitz, Michael B. .
SCIENCE, 2016, 351 (6274) :720-724
[7]   Constructing transcriptional regulatory networks [J].
Blais, A ;
Dynlacht, BD .
GENES & DEVELOPMENT, 2005, 19 (13) :1499-1511
[8]   Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries [J].
Boeva, Valentina ;
Louis-Brennetot, Caroline ;
Peltier, Agathe ;
Durand, Simon ;
Pierre-Eugene, Cecile ;
Raynal, Virginie ;
Etchevers, Heather C. ;
Thomas, Sophie ;
Lermine, Alban ;
Daudigeos-Dubus, Estelle ;
Geoerger, Birgit ;
Orth, Martin F. ;
Gruenewald, Thomas G. P. ;
Diaz, Elise ;
Ducos, Bertrand ;
Surdez, Didier ;
Carcaboso, Angel M. ;
Medvedeva, Irina ;
Deller, Thomas ;
Combaret, Valerie ;
Lapouble, Eve ;
Pierron, Gaelle ;
Grossetete-Lalami, Sandrine ;
Baulande, Sylvain ;
Schleiermacher, Gudrun ;
Barillot, Emmanuel ;
Rohrer, Hermann ;
Delattre, Olivier ;
Janoueix-Lerosey, Isabelle .
NATURE GENETICS, 2017, 49 (09) :1408-+
[9]   OPINION Non-genetic heterogeneity - a mutation-independent driving force for the somatic evolution of tumours [J].
Brock, Amy ;
Chang, Hannah ;
Huang, Sui .
NATURE REVIEWS GENETICS, 2009, 10 (05) :336-342
[10]   TGF-β-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma [J].
Brown, Jessie A. ;
Yonekubo, Yoshiya ;
Hanson, Nicole ;
Sastre-Perona, Ana ;
Basin, Alice ;
Rytlewski, Julie A. ;
Dolgalev, Igor ;
Meehan, Shane ;
Tsirigos, Aristotelis ;
Beronja, Slobodan ;
Schober, Markus .
CELL STEM CELL, 2017, 21 (05) :650-+