Matrix representation of formal polynomials over max-plus algebra

被引:1
|
作者
Wang, Cailu [1 ]
Tao, Yuegang [2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300130, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Max-plus algebra; formal polynomial; matrix representation; canonical form; factorization; algorithm; LINEAR-SYSTEMS;
D O I
10.1142/S0219498821502169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes the matrix representation of formal polynomials over max-plus algebra and obtains the maximum and minimum canonical forms of a polynomial function by standardizing this representation into a canonical form. A necessary and sufficient condition for two formal polynomials corresponding to the same polynomial function is derived. Such a matrix method is constructive and intuitive, and leads to a polynomial algorithm for factorization of polynomial functions. Some illustrative examples are presented to demonstrate the results.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Strongly Tolerance Solvability of Max-plus Matrix Equations
    Myskova, Helena
    MATHEMATICAL METHODS IN ECONOMICS (MME 2018), 2018, : 360 - 365
  • [32] On The Vectors Associated with the Roots of Max-Plus Characteristic Polynomials
    Yuki Nishida
    Sennosuke Watanabe
    Yoshihide Watanabe
    Applications of Mathematics, 2020, 65 : 785 - 805
  • [33] Soluble approximation of linear systems in max-plus algebra
    Cechlárová, K
    Cuninghame-Green, RA
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 809 - 811
  • [34] EIGENVALUES AND EIGENVECTORS OF LATIN SQUARES IN MAX-PLUS ALGEBRA
    Mufid, Muhammad
    Subiono
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2014, 20 (01) : 37 - 45
  • [35] An Efficient Algorithm for Nontrivial Eigenvectors in Max-Plus Algebra
    Umer, Mubasher
    Hayat, Umar
    Abbas, Fazal
    SYMMETRY-BASEL, 2019, 11 (06):
  • [36] Soluble approximation of linear systems in max-plus algebra
    Cechlárová, K
    Cuninghame-Green, RA
    KYBERNETIKA, 2003, 39 (02) : 137 - 141
  • [37] Max-Plus Algebra and Mathematical Fear in Dynamic Optimization
    Pierre Bernhard
    Set-Valued Analysis, 2000, 8 : 71 - 84
  • [38] The max-plus algebra of exponent matrices of tiled orders
    Dokuchaev, Mikhailo
    Kirichenko, Vladimir
    Kudryavtseva, Ganna
    Plakhotnyk, Makar
    JOURNAL OF ALGEBRA, 2017, 490 : 1 - 20
  • [39] Interval global optimization problem in max-plus algebra
    Myskova, Helena
    Plavka, Jan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 714 : 45 - 63
  • [40] Max-plus algebra and mathematical fear in dynamic optimization
    Bernhard, P
    SET-VALUED ANALYSIS, 2000, 8 (1-2): : 71 - 84