Matrix representation of formal polynomials over max-plus algebra

被引:1
|
作者
Wang, Cailu [1 ]
Tao, Yuegang [2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300130, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Max-plus algebra; formal polynomial; matrix representation; canonical form; factorization; algorithm; LINEAR-SYSTEMS;
D O I
10.1142/S0219498821502169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes the matrix representation of formal polynomials over max-plus algebra and obtains the maximum and minimum canonical forms of a polynomial function by standardizing this representation into a canonical form. A necessary and sufficient condition for two formal polynomials corresponding to the same polynomial function is derived. Such a matrix method is constructive and intuitive, and leads to a polynomial algorithm for factorization of polynomial functions. Some illustrative examples are presented to demonstrate the results.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Ordered Structures of Polynomials over Max-Plus Algebra
    Wang, Cailu
    Xia, Yuanqing
    Tao, Yuegang
    SYMMETRY-BASEL, 2021, 13 (07):
  • [2] A uniform synchronization problem over max-plus algebra
    Datti, AbdulKadir
    Aminu, Abdulhadi
    AFRIKA MATEMATIKA, 2021, 32 (3-4) : 567 - 576
  • [3] Generalized matrix period in max-plus algebra
    Molnárová, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 (1-3) : 345 - 366
  • [4] Linear matrix period in max-plus algebra
    Gavalec, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 307 (1-3) : 167 - 182
  • [5] Computing an eigenvector of an inverse Monge matrix in max-plus algebra
    Imaev, Aleksey A.
    Judd, Robert P.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1701 - 1707
  • [6] Structure of the eigenspace of a Monge matrix in max-plus algebra
    Gavalec, Martin
    Plavka, Jan
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (05) : 596 - 606
  • [7] Eigenvectors of interval matrices over max-plus algebra
    Cechlárová, K
    DISCRETE APPLIED MATHEMATICS, 2005, 150 (1-3) : 2 - 15
  • [8] On a generalization of power algorithms over max-plus algebra
    Kistosil Fahim
    Jacob Subiono
    Discrete Event Dynamic Systems, 2017, 27 : 181 - 203
  • [9] A uniform synchronization problem over max-plus algebra
    AbdulKadir Datti
    Abdulhadi Aminu
    Afrika Matematika, 2021, 32 : 567 - 576
  • [10] On a generalization of power algorithms over max-plus algebra
    Fahim, Kistosil
    Subiono
    van der Woude, Jacob
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2017, 27 (01): : 181 - 203