Lp-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on Double-struck capital Rn

被引:0
作者
Tao, Wenyu [1 ]
Chen, Yanping [1 ]
Xiao, Yayuan [2 ]
Wang, Liwei [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
[3] Anhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
commutator; Kato square root; elliptic operators; Sobolev space; WEIGHTED NORM INEQUALITIES; INTEGRAL-OPERATORS; BMO FUNCTIONS; SPACES;
D O I
10.1007/s11425-017-9310-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -div(A backward difference ) be a second-order divergent-form elliptic operator, where A is an accretive n x n matrix with bounded and measurable complex coefficients on Double-struck capital R-n: Herein, we prove that the commutator [b; L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt L $$\end{document}] of the Kato square root L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt L $$\end{document} and b with backward difference b is an element of L-n(Double-struck capital R-n)(n > 2), is bounded from the homogenous Sobolev space L & x2d9;1p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot L_1<^>p(\mathbb{R}<^>n)$$\end{document} to L-p(Double-struck capital Rn) (p-(L) < p < p+(L)).
引用
收藏
页码:575 / 594
页数:20
相关论文
共 37 条
[21]   Lp bounds for Riesz transforms and square roots associated to second order elliptic operators [J].
Hofmann, S ;
Martell, JM .
PUBLICACIONS MATEMATIQUES, 2003, 47 (02) :497-515
[22]   The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds [J].
Hofmann, S ;
Lacey, M ;
McIntosh, A .
ANNALS OF MATHEMATICS, 2002, 156 (02) :623-631
[23]   New Orlicz-Hardy spaces associated with divergence form elliptic operators [J].
Jiang, Renjin ;
Yang, Dachun .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) :1167-1224
[24]   ON FUNCTIONS OF BOUNDED MEAN OSCILLATION [J].
JOHN, F ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) :415-&
[25]  
Kato T., 1961, J MATH SOC JAPAN, V13, P246, DOI 10.2969/jmsj/01330246
[26]   Endpoint boundedness of commutators on spaces of homogeneous type [J].
Liu, Liguang ;
Chang, Der-Chen ;
Fu, Xing ;
Yang, Dachun .
APPLICABLE ANALYSIS, 2017, 96 (14) :2408-2433
[27]  
McIntosh A, 1984, MINICONFERENCE OPERA, P124
[28]  
Meyer Y., 1985, Recent Progress in Fourier Analysis (El Escorial, 1983), V111, P123
[29]   Sharp weighted estimates for multilinear commutators [J].
Pérez, C ;
Trujillo-González, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :672-692
[30]   Characterization of Lipschitz Functions via the Commutators of Singular and Fractional Integral Operators in Variable Lebesgue Spaces [J].
Pradolini, G. G. ;
Ramos, W. A. .
POTENTIAL ANALYSIS, 2017, 46 (03) :499-525