Lp-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on Double-struck capital Rn

被引:0
作者
Tao, Wenyu [1 ]
Chen, Yanping [1 ]
Xiao, Yayuan [2 ]
Wang, Liwei [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
[3] Anhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
commutator; Kato square root; elliptic operators; Sobolev space; WEIGHTED NORM INEQUALITIES; INTEGRAL-OPERATORS; BMO FUNCTIONS; SPACES;
D O I
10.1007/s11425-017-9310-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -div(A backward difference ) be a second-order divergent-form elliptic operator, where A is an accretive n x n matrix with bounded and measurable complex coefficients on Double-struck capital R-n: Herein, we prove that the commutator [b; L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt L $$\end{document}] of the Kato square root L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt L $$\end{document} and b with backward difference b is an element of L-n(Double-struck capital R-n)(n > 2), is bounded from the homogenous Sobolev space L & x2d9;1p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot L_1<^>p(\mathbb{R}<^>n)$$\end{document} to L-p(Double-struck capital Rn) (p-(L) < p < p+(L)).
引用
收藏
页码:575 / 594
页数:20
相关论文
共 37 条
[1]  
[Anonymous], 1982, Res. Notes in Math.
[2]  
[Anonymous], 1990, ACTUALITES MATH
[3]  
[Anonymous], 1976, Grundlehren der mathematischen Wissenschaften
[4]  
[Anonymous], JAN, DOI DOI 10.1016/J.JVS.2018.11.029
[5]   On LP estimates for square roots of second order elliptic operators on Rn [J].
Auscher, P .
PUBLICACIONS MATEMATIQUES, 2004, 48 (01) :159-186
[6]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[7]   Extrapolation of Carleson measures and the analyticity of Kato's square-root operators [J].
Auscher, P ;
Hofmann, S ;
Lewis, JL ;
Tchamitchian, P .
ACTA MATHEMATICA, 2001, 187 (02) :161-190
[8]  
Auscher P., 1998, SQUARE ROOT PROBLEM
[9]  
Auscher P, 2007, MEMOIRS AM MATH SOC
[10]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights [J].
Auscher, Pascal ;
Martell, Jose Maria .
ADVANCES IN MATHEMATICS, 2007, 212 (01) :225-276