Structural basis for isoform-specific inhibition of human CTPS1

被引:27
作者
Lynch, Eric M. [1 ]
DiMattia, Michael A. [2 ]
Albanese, Steven [2 ]
van Zundert, Gydo C. P. [2 ]
Hansen, Jesse M. [1 ]
Quispe, Joel D. [1 ]
Kennedy, Madison A. [1 ]
Verras, Andreas [2 ]
Borrelli, Kenneth [2 ]
Toms, Angela, V [3 ]
Kaila, Neelu [3 ]
Kreutter, Kevin D. [3 ]
McElwee, Joshua J. [3 ]
Kollman, Justin M. [1 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Schrodinger, New York, NY 10036 USA
[3] Nimbus Therapeut, Cambridge, MA 02139 USA
关键词
enzymes; CTP synthase; immune disorders; small molecules; cryo-EM; CYTIDINE TRIPHOSPHATE SYNTHETASE; CYCLOPENTENYL CYTOSINE; CRYO-EM; IMP DEHYDROGENASE; PHASE-II; ACIVICIN; PROTEIN; RESISTANCE; REVEALS; CELLS;
D O I
10.1073/pnas.2107968118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cytidine triphosphate synthase 1 (CTPS1) is necessary for an effective immune response, as revealed by severe immunodeficiency in CTPS1-deficient individuals [E. Martin et al.], [Nature] [510], [288-292] ([2014]). CTPS1 expression is up-regulated in activated lymphocytes to expand CTP pools [E. Martin et al.], [Nature] [510], [288-292] ([2014]), satisfying increased demand for nucleic acid and lipid synthesis [L. D. Fairbanks, M. Bofill, K. Ruckemann, H. A. Simmonds], [J. Biol. Chem. ] [270], [29682-29689] ([1995]). Demand for CTP in other tissues is met by the CTPS2 isoform and nucleoside salvage pathways [E. Martin et al.], [Nature] [510], [288-292] ([2014]). Selective inhibition of the proliferative CTPS1 isoform is therefore desirable in the treatment of immune disorders and lymphocyte cancers, but little is known about differences in regulation of the isoforms or mechanisms of known inhibitors. We show that CTP regulates both isoforms by binding in two sites that clash with substrates. CTPS1 is less sensitive to CTP feedback inhibition, consistent with its role in increasing CTP levels in proliferation. We also characterize recently reported small-molecule inhibitors, both CTPS1 selective and nonselective. Cryo-electron microscopy (cryo-EM) structures reveal these inhibitors mimic CTP binding in one inhibitory site, where a single amino acid substitution explains selectivity for CTPS1. The inhibitors bind to CTPS assembled into large-scale filaments, which for CTPS1 normally represents a hyperactive form of the enzyme [E. M. Lynch et al.], [Nat. Struct. Mol. Biol.] [24], [507-514] ([2017]). This highlights the utility of cryo-EM in drug discovery, particularly for cases in which targets form large multimeric assemblies not amenable to structure determination by other techniques. Both inhibitors also inhibit the proliferation of human primary T cells. The mechanisms of selective inhibition of CTPS1 lay the foundation for the design of immunosuppressive therapies.
引用
收藏
页数:9
相关论文
共 78 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] Real-space refinement in PHENIX for cryo-EM and crystallography
    Afonine, Pavel V.
    Poon, Billy K.
    Read, Randy J.
    Sobolev, Oleg V.
    Terwilliger, Thomas C.
    Urzhumtsev, Alexandre
    Adams, Paul D.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 : 531 - 544
  • [3] Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations
    Anthony, Sajitha A.
    Burrell, Anika L.
    Johnson, Matthew C.
    Duong-Ly, Krisna C.
    Kuo, Yin-Ming
    Simonet, Jacqueline C.
    Michener, Peter
    Andrews, Andrew
    Kollman, Justin M.
    Peterson, Jeffrey R.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2017, 28 (20) : 2600 - 2608
  • [4] Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism
    Aughey, Gabriel N.
    Grice, Stuart J.
    Shen, Qing-Ji
    Xu, Yichi
    Chang, Chia-Chun
    Azzam, Ghows
    Wang, Pei-Yu
    Freeman-Mills, Luke
    Pai, Li-Mei
    Sung, Li-Ying
    Yan, Jun
    Liu, Ji-Long
    [J]. BIOLOGY OPEN, 2014, 3 (11): : 1045 - 1056
  • [5] Large-scale filament formation inhibits the activity of CTP synthetase
    Barry, Rachael M.
    Bitbol, Anne-Florence
    Lorestani, Alexander
    Charles, Emeric J.
    Habrian, Chris H.
    Hansen, Jesse M.
    Li, Hsin-Jung
    Baldwin, Enoch P.
    Wingreen, Ned S.
    Kollman, Justin M.
    Gitai, Zemer
    [J]. ELIFE, 2014, 3 : 1 - 19
  • [6] Cyclopentenyl cytosine primes SK-N-BE(2)c neuroblastoma cells for cytarabine toxicity
    Bierau, J
    van Gennip, AH
    Leen, R
    Helleman, J
    Caron, HN
    van Kuilenburg, ABP
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2003, 103 (03) : 387 - 392
  • [7] MECHANISM OF RESISTANCE TO CYCLOPENTENYL CYTOSINE (CPE-C) IN MOLT-4 LYMPHOBLASTS
    BLANEY, SM
    GREM, JL
    BALIS, FM
    COLE, DE
    ADAMSON, PC
    POPLACK, DG
    [J]. BIOCHEMICAL PHARMACOLOGY, 1993, 45 (07) : 1493 - 1501
  • [8] MECHANISM OF ACTION OF 3-DEAZAURIDINE IN TUMOR-CELLS SENSITIVE AND RESISTANT TO ARABINOSYLCYTOSINE
    BROCKMAN, RW
    SHADDIX, SC
    WILLIAMS, M
    NELSON, JA
    ROSE, LM
    SCHABEL, FM
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1975, 255 (AUG8) : 501 - 521
  • [9] Immune Response-Dependent Assembly of IMP Dehydrogenase Filaments
    Calise, S. John
    Abboud, Georges
    Kasahara, Hideko
    Morel, Laurence
    Chan, Edward K. L.
    [J]. FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [10] Glutamine deprivation initiates reversible assembly of mammalian rods and rings
    Calise, S. John
    Carcamo, Wendy C.
    Krueger, Claire
    Yin, Joyce D.
    Purich, Daniel L.
    Chan, Edward K. L.
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2014, 71 (15) : 2963 - 2973