The interplay between Zeeman splitting and spin-orbit coupling in InAs nanowires

被引:2
|
作者
Kim, Bum-Kyu [1 ]
Choi, Sang-Jun [2 ,3 ]
Shin, Jae Cheol [4 ]
Kim, Minsoo [5 ]
Ahn, Ye-Hwan [1 ,6 ]
Sim, H. -S. [2 ]
Kim, Ju-Jin [7 ]
Bae, Myung-Ho [1 ,8 ]
机构
[1] Korea Res Inst Stand & Sci, Daejeon 34113, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[3] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[4] Yeungnam Univ, Dept Phys, Gyongsan 38541, South Korea
[5] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[6] Korea Univ, Dept Phys, Seoul 136713, South Korea
[7] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[8] Univ Sci & Technol, Dept Nano Sci, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
QUANTIZED CONDUCTANCE; BERRYS PHASE; QUANTUM;
D O I
10.1039/c8nr07728b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Coupling of the electron orbital motion and spin, i.e., spin-orbit coupling (SOC) leads to nontrivial changes in energy-level structures, giving rise to various spectroscopies and applications. The SOC in solids generates energy-band inversion or splitting under zero or weak magnetic fields, which is required for topological phases or Majorana fermions. Here, we examined the interplay between the Zeeman splitting and SOC by performing the transport spectroscopy of Landau levels (LLs) in indium arsenide nanowires under a strong magnetic field. We observed the anomalous Zeeman splitting of LLs, which depends on the quantum number of LLs as well as the electron spin. We considered that this observation was attributed to the interplay between the Zeeman splitting and the SOC. Our findings suggest an approach of generating spin-resolved chiral electron transport in nanowires.
引用
收藏
页码:23175 / 23181
页数:7
相关论文
共 50 条
  • [41] Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zezyulin, Dmitry A.
    Torner, Lluis
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [42] Experimental evidence for Zeeman spin-orbit coupling in layered antiferromagnetic conductors
    Ramazashvili, R.
    Grigoriev, P. D.
    Helm, T.
    Kollmannsberger, F.
    Kunz, M.
    Biberacher, W.
    Kampert, E.
    Fujiwara, H.
    Erb, A.
    Wosnitza, J.
    Gross, R.
    Kartsovnik, M. V.
    NPJ QUANTUM MATERIALS, 2021, 6 (01)
  • [43] Intersubband spin-orbit coupling and spin splitting in symmetric quantum wells
    Kyrychenko, F. V.
    Ullrich, C. A.
    D'Amico, I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (08) : 944 - 948
  • [44] Synergetic effect of spin-orbit coupling and Zeeman splitting on the optical conductivity in the one-dimensional Hubbard model
    Bolens, Adrien
    Katsura, Hosho
    Ogata, Masao
    Miyashita, Seiji
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [45] Bloch Oscillations in Optical and Zeeman Lattices in the Presence of Spin-Orbit Coupling
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zezyulin, Dmitry A.
    Torner, Lluis
    PHYSICAL REVIEW LETTERS, 2016, 117 (21)
  • [46] Crystalline spin-orbit interaction and the Zeeman splitting in Pb1-xSnxTe
    Hayasaka, Hiroshi
    Fuseya, Yuki
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (31)
  • [47] Nontrivial interplay of superconductivity and spin-orbit coupling in noncentrosymmetric ferromagnets
    Linder, Jacob
    Nevidomskyy, Andriy H.
    Sudbo, Asle
    PHYSICAL REVIEW B, 2008, 78 (17):
  • [48] Interplay between in-plane magnetic fields and spin-orbit coupling in InGaAs/InP
    Coleridge, PT
    Studenikin, SA
    Yu, G
    Poole, PJ
    Physics of Semiconductors, Pts A and B, 2005, 772 : 1347 - 1348
  • [49] Interplay between Kondo physics and spin-orbit coupling in carbon nanotube quantum dots
    Galpin, Martin R.
    Jayatilaka, Frederic W.
    Logan, David E.
    Anders, Frithjof B.
    PHYSICAL REVIEW B, 2010, 81 (07)
  • [50] Interplay between spin-orbit coupling and crystal-field effect in topological insulators
    Lee, Hyungjun
    Yazyev, Oleg V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (28)