The Minkowski Problem for Torsional Rigidity

被引:48
作者
Colesanti, Andrea [1 ]
Fimiani, Michele [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
Minkowski problem; torsional rigidity; convex bodies; CONCAVITY; CAPACITY;
D O I
10.1512/iumj.2010.59.3937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence and uniqueness up to translations of the solution to a Minkowski type problem for the torsional rigidity in the class of open bounded convex subsets of R-n. For the existence part we apply the variational method introduced by Jerison in: Adv. Math. 122 (1996), pp. 262-279. Uniqueness follows from the Brunn-Minkowski inequality for the torsional rigidity and corresponding equality conditions.
引用
收藏
页码:1013 / 1039
页数:27
相关论文
共 13 条
[1]  
[Anonymous], 1977, GRUNDLEHREN MATH WIS
[2]   GREENIAN POTENTIALS AND CONCAVITY [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1985, 272 (01) :155-160
[3]   On the case of equality in the Brunn-Minkowski inequality for capacity [J].
Caffarelli, LA ;
Jerison, D ;
Lieb, EH .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :193-207
[4]   REGULARITY OF SOLUTION OF N-DIMENSIONAL MINKOWSKI PROBLEM [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (05) :495-516
[5]   Brunn-Minkowski inequalities for variational functionals and related problems [J].
Colesanti, A .
ADVANCES IN MATHEMATICS, 2005, 194 (01) :105-140
[6]  
DAHLBERG BEJ, 1977, ARCH RATION MECH AN, V65, P276
[7]  
FIMIANI M, 2008, THESIS U STUDI FIREN
[8]   The direct method in the calculus of variations for convex bodies [J].
Jerison, D .
ADVANCES IN MATHEMATICS, 1996, 122 (02) :262-279
[9]   A Minkowski problem for electrostatic capacity [J].
Jerison, D .
ACTA MATHEMATICA, 1996, 176 (01) :1-47
[10]  
KENIG C., 1994, CBMS Regional Conference Series in Mathematics., V83