An effective approach to detecting both small and large complexes from protein-protein interaction networks

被引:25
|
作者
Xu, Bin [1 ]
Wang, Yang [6 ]
Wang, Zewei [7 ]
Zhou, Jiaogen [5 ]
Zhou, Shuigeng [2 ,3 ,4 ]
Guan, Jihong [1 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, 220 Handan Rd, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Comp Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
[4] Changzhou 7 Peoples Hosp, Bioinformat Lab, Changzhou 213011, Jiangsu, Peoples R China
[5] Chinese Acad Sci, Inst Subtrop Agr, 444 Yuandaer Rd, Changsha 410125, Hunan, Peoples R China
[6] Jiangxi Normal Univ, Sch Software, 99 Ziyang Ave, Nanchang 330022, Jiangxi, Peoples R China
[7] Shanghai Southwest Model Middle Sch, 67 Huicheng Vallige 1,Baise Rd, Shanghai 200237, Peoples R China
来源
BMC BIOINFORMATICS | 2017年 / 18卷
基金
中国国家自然科学基金;
关键词
Small protein complex; Large protein complex; Protein-protein interaction; Protein complex prediction; FUNCTIONAL MODULES; SACCHAROMYCES-CEREVISIAE; PPI NETWORKS; IDENTIFICATION; PREDICTION; DATABASE; GENOMES;
D O I
10.1186/s12859-017-1820-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Predicting protein complexes from protein-protein interaction (PPI) networks has been studied for decade. Various methods have been proposed to address some challenging issues of this problem, including overlapping clusters, high false positive/negative rates of PPI data and diverse complex structures. It is well known that most current methods can detect effectively only complexes of size >= 3, which account for only about half of the total existing complexes. Recently, a method was proposed specifically for finding small complexes (size = 2 and 3) from PPI networks. However, up to now there is no effective approach that can predict both small (size <= 3) and large (size > 3) complexes from PPI networks. Results: In this paper, we propose a novel method, called CPredictor2.0, that can detect both small and large complexes under a unified framework. Concretely, we first group proteins of similar functions. Then, the Markov clustering algorithm is employed to discover clusters in each group. Finally, we merge all discovered clusters that overlap with each other to a certain degree, and the merged clusters as well as the remaining clusters constitute the set of detected complexes. Extensive experiments have shown that the new method can more effectively predict both small and large complexes, in comparison with the state-of-the-art methods. Conclusions: The proposed method, CPredictor2.0, can be applied to accurately predict both small and large protein complexes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Analyzing Protein-Protein Interaction Networks
    Koh, Gavin C. K. W.
    Porras, Pablo
    Aranda, Bruno
    Hermjakob, Henning
    Orchard, Sandra E.
    JOURNAL OF PROTEOME RESEARCH, 2012, 11 (04) : 2014 - 2031
  • [32] Module organization and variance in protein-protein interaction networks
    Lin, Chun-Yu
    Lee, Tsai-Ling
    Chiu, Yi-Yuan
    Lin, Yi-Wei
    Lo, Yu-Shu
    Lin, Chih-Ta
    Yang, Jinn-Moon
    SCIENTIFIC REPORTS, 2015, 5
  • [33] An Improved Memetic Algorithm for Detecting Protein Complexes in Protein Interaction Networks
    Wang, Rongquan
    Ma, Huimin
    Wang, Caixia
    FRONTIERS IN GENETICS, 2021, 12
  • [34] Protein-protein interaction networks as miners of biological discovery
    Wang, Steven
    Wu, Runxin
    Lu, Jiaqi
    Jiang, Yijia
    Huang, Tao
    Cai, Yu-Dong
    PROTEOMICS, 2022, 22 (15-16)
  • [35] RocSampler: regularizing overlapping protein complexes in protein-protein interaction networks
    Osamu Maruyama
    Yuki Kuwahara
    BMC Bioinformatics, 18
  • [36] EnPC: An Ensemble Clustering Framework for Detecting Protein Complexes in Protein-Protein Interaction Network
    Dai, Qiguo
    Duan, Xiaodong
    Guo, Maozu
    Guo, Yingjie
    CURRENT PROTEOMICS, 2016, 13 (02) : 143 - 150
  • [37] Identifying Protein Complexes in Dynamic Protein-Protein Interaction Networks Based on Cuckoo Search Algorithm
    Zhao, Jie
    Lei, Xiujuan
    Wu, Fang-Xiang
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1288 - 1295
  • [38] A comprehensive set of protein complexes in yeast: mining large scale protein-protein interaction screens
    Krause, R
    von Mering, C
    Bork, P
    BIOINFORMATICS, 2003, 19 (15) : 1901 - 1908
  • [39] Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks
    Yu, Liang
    Gao, Lin
    Kong, ChuiLiang
    PROTEOMICS, 2011, 11 (19) : 3826 - 3834
  • [40] Analysis of Protein-Protein Interaction Networks Based on Binding Affinity
    Yugandhar, K.
    Gromiha, M. Michael
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2016, 17 (01) : 72 - 81