An effective approach to detecting both small and large complexes from protein-protein interaction networks

被引:25
|
作者
Xu, Bin [1 ]
Wang, Yang [6 ]
Wang, Zewei [7 ]
Zhou, Jiaogen [5 ]
Zhou, Shuigeng [2 ,3 ,4 ]
Guan, Jihong [1 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, 220 Handan Rd, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Comp Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
[4] Changzhou 7 Peoples Hosp, Bioinformat Lab, Changzhou 213011, Jiangsu, Peoples R China
[5] Chinese Acad Sci, Inst Subtrop Agr, 444 Yuandaer Rd, Changsha 410125, Hunan, Peoples R China
[6] Jiangxi Normal Univ, Sch Software, 99 Ziyang Ave, Nanchang 330022, Jiangxi, Peoples R China
[7] Shanghai Southwest Model Middle Sch, 67 Huicheng Vallige 1,Baise Rd, Shanghai 200237, Peoples R China
来源
BMC BIOINFORMATICS | 2017年 / 18卷
基金
中国国家自然科学基金;
关键词
Small protein complex; Large protein complex; Protein-protein interaction; Protein complex prediction; FUNCTIONAL MODULES; SACCHAROMYCES-CEREVISIAE; PPI NETWORKS; IDENTIFICATION; PREDICTION; DATABASE; GENOMES;
D O I
10.1186/s12859-017-1820-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Predicting protein complexes from protein-protein interaction (PPI) networks has been studied for decade. Various methods have been proposed to address some challenging issues of this problem, including overlapping clusters, high false positive/negative rates of PPI data and diverse complex structures. It is well known that most current methods can detect effectively only complexes of size >= 3, which account for only about half of the total existing complexes. Recently, a method was proposed specifically for finding small complexes (size = 2 and 3) from PPI networks. However, up to now there is no effective approach that can predict both small (size <= 3) and large (size > 3) complexes from PPI networks. Results: In this paper, we propose a novel method, called CPredictor2.0, that can detect both small and large complexes under a unified framework. Concretely, we first group proteins of similar functions. Then, the Markov clustering algorithm is employed to discover clusters in each group. Finally, we merge all discovered clusters that overlap with each other to a certain degree, and the merged clusters as well as the remaining clusters constitute the set of detected complexes. Extensive experiments have shown that the new method can more effectively predict both small and large complexes, in comparison with the state-of-the-art methods. Conclusions: The proposed method, CPredictor2.0, can be applied to accurately predict both small and large protein complexes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks
    Liu, Lizhen
    Sun, Xiaowu
    Song, Wei
    Du, Chao
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (06) : 586 - 605
  • [22] Identifying Protein Complexes from Dynamic Temporal Interval Protein-Protein Interaction Networks
    Zhang, Jinxiong
    Zhong, Cheng
    Lin, Hai Xiang
    Wang, Mian
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [23] CPL:Detecting Protein Complexes by Propagating Labels on Protein-Protein Interaction Network
    代启国
    郭茂祖
    刘晓燕
    滕志霞
    王春宇
    JournalofComputerScienceandTechnology, 2014, 29 (06) : 1083 - 1093
  • [24] CPL: Detecting Protein Complexes by Propagating Labels on Protein-Protein Interaction Network
    Qi-Guo Dai
    Mao-Zu Guo
    Xiao-Yan Liu
    Zhi-Xia Teng
    Chun-Yu Wang
    Journal of Computer Science and Technology, 2014, 29 : 1083 - 1093
  • [25] CPL: Detecting Protein Complexes by Propagating Labels on Protein-Protein Interaction Network
    Dai, Qi-Guo
    Guo, Mao-Zu
    Liu, Xiao-Yan
    Teng, Zhi-Xia
    Wang, Chun-Yu
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2014, 29 (06) : 1083 - 1093
  • [26] Protein-protein interaction networks: from interactions to networks
    Cho, SY
    Park, SG
    Lee, DH
    Park, BC
    JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2004, 37 (01): : 45 - 52
  • [27] HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks
    Wang, Xiaomin
    Wang, Zhengzhi
    Ye, Jun
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2011,
  • [28] RocSampler: Regularizing Overlapping Protein Complexes in Protein-Protein Interaction Networks
    Maruyama, Osamu
    Kuwahara, Yuki
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2016,
  • [29] RocSampler: regularizing overlapping protein complexes in protein-protein interaction networks
    Osamu Maruyama
    Yuki Kuwahara
    BMC Bioinformatics, 18
  • [30] RocSampler: regularizing overlapping protein complexes in protein-protein interaction networks
    Maruyama, Osamu
    Kuwahara, Yuki
    BMC BIOINFORMATICS, 2017, 18 : 491