An effective approach to detecting both small and large complexes from protein-protein interaction networks

被引:27
作者
Xu, Bin [1 ]
Wang, Yang [6 ]
Wang, Zewei [7 ]
Zhou, Jiaogen [5 ]
Zhou, Shuigeng [2 ,3 ,4 ]
Guan, Jihong [1 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, 220 Handan Rd, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Comp Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
[4] Changzhou 7 Peoples Hosp, Bioinformat Lab, Changzhou 213011, Jiangsu, Peoples R China
[5] Chinese Acad Sci, Inst Subtrop Agr, 444 Yuandaer Rd, Changsha 410125, Hunan, Peoples R China
[6] Jiangxi Normal Univ, Sch Software, 99 Ziyang Ave, Nanchang 330022, Jiangxi, Peoples R China
[7] Shanghai Southwest Model Middle Sch, 67 Huicheng Vallige 1,Baise Rd, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Small protein complex; Large protein complex; Protein-protein interaction; Protein complex prediction; FUNCTIONAL MODULES; SACCHAROMYCES-CEREVISIAE; PPI NETWORKS; IDENTIFICATION; PREDICTION; DATABASE; GENOMES;
D O I
10.1186/s12859-017-1820-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Predicting protein complexes from protein-protein interaction (PPI) networks has been studied for decade. Various methods have been proposed to address some challenging issues of this problem, including overlapping clusters, high false positive/negative rates of PPI data and diverse complex structures. It is well known that most current methods can detect effectively only complexes of size >= 3, which account for only about half of the total existing complexes. Recently, a method was proposed specifically for finding small complexes (size = 2 and 3) from PPI networks. However, up to now there is no effective approach that can predict both small (size <= 3) and large (size > 3) complexes from PPI networks. Results: In this paper, we propose a novel method, called CPredictor2.0, that can detect both small and large complexes under a unified framework. Concretely, we first group proteins of similar functions. Then, the Markov clustering algorithm is employed to discover clusters in each group. Finally, we merge all discovered clusters that overlap with each other to a certain degree, and the merged clusters as well as the remaining clusters constitute the set of detected complexes. Extensive experiments have shown that the new method can more effectively predict both small and large complexes, in comparison with the state-of-the-art methods. Conclusions: The proposed method, CPredictor2.0, can be applied to accurately predict both small and large protein complexes.
引用
收藏
页数:10
相关论文
共 37 条
[1]   CFinder:: locating cliques and overlapping modules in biological networks [J].
Adamcsek, B ;
Palla, G ;
Farkas, IJ ;
Derényi, I ;
Vicsek, T .
BIOINFORMATICS, 2006, 22 (08) :1021-1023
[2]   Development and implementation of an algorithm for detection of protein complexes in large interaction networks [J].
Altaf-Ul-Amin, Md ;
Shinbo, Yoko ;
Mihara, Kenji ;
Kurokawa, Ken ;
Kanaya, Shigehiko .
BMC BIOINFORMATICS, 2006, 7 (1)
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[5]   Identifying protein complexes and functional modules-from static PPI networks to dynamic PPI networks [J].
Chen, Bolin ;
Fan, Weiwei ;
Liu, Juan ;
Wu, Fang-Xiang .
BRIEFINGS IN BIOINFORMATICS, 2014, 15 (02) :177-194
[6]   Identifying Protein Complexes Based on Multiple Topological Structures in PPI Networks [J].
Chen, Bolin ;
Wu, Fang-Xiang .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2013, 12 (03) :165-172
[7]   Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J].
Collins, Sean R. ;
Kemmeren, Patrick ;
Zhao, Xue-Chu ;
Greenblatt, Jack F. ;
Spencer, Forrest ;
Holstege, Frank C. P. ;
Weissman, Jonathan S. ;
Krogan, Nevan J. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (03) :439-450
[8]   An efficient algorithm for large-scale detection of protein families [J].
Enright, AJ ;
Van Dongen, S ;
Ouzounis, CA .
NUCLEIC ACIDS RESEARCH, 2002, 30 (07) :1575-1584
[9]   A Max-Flow-Based Approach to the Identification of Protein Complexes Using Protein Interaction and Microarray Data [J].
Feng, Jianxing ;
Jiang, Rui ;
Jiang, Tao .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (03) :621-634
[10]   Proteome survey reveals modularity of the yeast cell machinery [J].
Gavin, AC ;
Aloy, P ;
Grandi, P ;
Krause, R ;
Boesche, M ;
Marzioch, M ;
Rau, C ;
Jensen, LJ ;
Bastuck, S ;
Dümpelfeld, B ;
Edelmann, A ;
Heurtier, MA ;
Hoffman, V ;
Hoefert, C ;
Klein, K ;
Hudak, M ;
Michon, AM ;
Schelder, M ;
Schirle, M ;
Remor, M ;
Rudi, T ;
Hooper, S ;
Bauer, A ;
Bouwmeester, T ;
Casari, G ;
Drewes, G ;
Neubauer, G ;
Rick, JM ;
Kuster, B ;
Bork, P ;
Russell, RB ;
Superti-Furga, G .
NATURE, 2006, 440 (7084) :631-636