Global existence of weak solutions for Navier-Stokes-BGK system

被引:13
|
作者
Choi, Young-Pil [1 ]
Yun, Seok-Bae [2 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Vlasov equation; BGK model; incompressible Navier-Stokes equations; spray models; global existence of weak solutions; SEMI-LAGRANGIAN SCHEME; KINETIC-EQUATIONS; CAUCHY-PROBLEM; CLASSICAL-SOLUTIONS; EULER EQUATIONS; MODEL; VLASOV; LIMIT; MOMENTS; CONVERGENCE;
D O I
10.1088/1361-6544/ab6c38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posedness of a coupled system of kinetic and fluid equations. More precisely, we establish the global existence of weak solutions for Navier-Stokes-BGK system consisting of the BGK model of Boltzmann equation and incompressible Navier-Stokes equations coupled through a drag forcing term. This is achieved by combining weak compactness of the particle interaction operator based on Dunford-Pettis theorem, strong compactness of macroscopic fields of the kinetic part relied on velocity averaging lemma and a high order moment estimate, and strong compactness of the fluid part by Aubin-Lions lemma.
引用
收藏
页码:1925 / 1955
页数:31
相关论文
共 50 条
  • [1] Strong solutions to the inhomogeneous Navier-Stokes-BGK system
    Choi, Young-Pil
    Lee, Jaeseung
    Yun, Seok-Bae
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 57
  • [2] On the global existence of weak solutions for the Cucker-Smale-Navier-Stokes system with shear thickening
    Ha, Seung-Yeal
    Kim, Hwa Kil
    Kim, Jae-Myoung
    Park, Jinyeong
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (11) : 2033 - 2052
  • [3] On the Cauchy Problem of the Vlasov-Poisson-BGK System: Global Existence of Weak Solutions
    Zhang, Xianwen
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (03) : 566 - 588
  • [4] Global existence of weak solutions to the Navier-Stokes-Korteweg equations
    Antonelli, Paolo
    Spirito, Stefano
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (01): : 171 - 200
  • [5] Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system
    Colli, Pierluigi
    Frigeri, Sergio
    Grasselli, Maurizio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 428 - 444
  • [6] Global existence of weak and strong solutions to Cucker-Smale-Navier-Stokes equations in R2
    Choi, Young-Pi
    Lee, Jihoon
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 : 158 - 182
  • [7] Local well-posedness for the compressible Navier-Stokes-BGK model in Sobolev spaces with exponential weight
    Choi, Young-Pil
    Jung, Jinwook
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (02) : 285 - 344
  • [8] Existence of global weak solutions of inhomogeneous incompressible Navier-Stokes system with mass diffusion
    Kacedan, Eliott
    Soga, Kohei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [9] Existence of global weak solution for quantum Navier-Stokes system
    Yang, Jianwei
    Peng, Gaohui
    Hao, Huiyun
    Que, Fengzhen
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (05)
  • [10] Global Weak Solutions to the Navier-Stokes-Vlasov-Poisson System
    Anoshchenko, O.
    Khruslov, E.
    Stephan, H.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2010, 6 (02) : 143 - 182