Stochastic reaction-diffusion kinetics in the microscopic limit

被引:91
作者
Fange, David
Berg, Otto G. [2 ]
Sjoberg, Paul
Elf, Johan [1 ]
机构
[1] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, S-75124 Uppsala, Sweden
[2] Uppsala Univ, Dept Mol Evolut, Uppsala 75236, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
diffusion-limited; mesoscopic; master equation; Smoluchowski; spatial; CHEMICAL-REACTIONS; NONEQUILIBRIUM SYSTEMS; SIMULATIONS;
D O I
10.1073/pnas.1006565107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantitative analysis of biochemical networks often requires consideration of both spatial and stochastic aspects of chemical processes. Despite significant progress in the field, it is still computationally prohibitive to simulate systems involving many reactants or complex geometries using a microscopic framework that includes the finest length and time scales of diffusion-limited molecular interactions. For this reason, spatially or temporally discretized simulations schemes are commonly used when modeling intracellular reaction networks. The challenge in defining such coarse-grained models is to calculate the correct probabilities of reaction given the microscopic parameters and the uncertainty in the molecular positions introduced by the spatial or temporal discretization. In this paper we have solved this problem for the spatially discretized Reaction-Diffusion Master Equation; this enables a seamless and physically consistent transition from the microscopic to the macroscopic frameworks of reaction-diffusion kinetics. We exemplify the use of the methods by showing that a phosphorylation-dephosphorylation motif, commonly observed in eukaryotic signaling pathways, is predicted to display fluctuations that depend on the geometry of the system.
引用
收藏
页码:19820 / 19825
页数:6
相关论文
共 30 条
[1]  
Ander M., 2004, Systems Biology, V1, P129, DOI 10.1049/sb:20045017
[2]   Stochastic simulation of chemical reactions with spatial resolution and single molecule detail [J].
Andrews, SS ;
Bray, D .
PHYSICAL BIOLOGY, 2004, 1 (03) :137-151
[3]  
[Anonymous], 2009, Stochastic Methods
[4]   DETERMINISTIC LIMIT OF THE STOCHASTIC-MODEL OF CHEMICAL-REACTIONS WITH DIFFUSION [J].
ARNOLD, L ;
THEODOSOPULU, M .
ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) :367-379
[5]   MICROSCOPIC SIMULATIONS OF CHEMICAL INSTABILITIES [J].
Baras, F. ;
Mansour, M. Malek .
ADVANCES IN CHEMICAL PHYSICS <D>, 1997, 100 :393-474
[6]   ON DIFFUSION-CONTROLLED DISSOCIATION [J].
BERG, OG .
CHEMICAL PHYSICS, 1978, 31 (01) :47-57
[7]   DIFFUSION-DRIVEN MECHANISMS OF PROTEIN TRANSLOCATION ON NUCLEIC-ACIDS .1. MODELS AND THEORY [J].
BERG, OG ;
WINTER, RB ;
VONHIPPEL, PH .
BIOCHEMISTRY, 1981, 20 (24) :6929-6948
[8]   MICROSCOPIC DIFFUSION-REACTION COUPLING IN STEADY-STATE ENZYME-KINETICS [J].
BERG, OG ;
EHRENBERG, M .
BIOPHYSICAL CHEMISTRY, 1983, 17 (01) :13-28
[9]   FASTER MONTE-CARLO SIMULATIONS [J].
BLUE, JL ;
BEICHL, I ;
SULLIVAN, F .
PHYSICAL REVIEW E, 1995, 51 (02) :R867-R868
[10]   Fast Monte Carlo algorithm for nonequilibrium systems [J].
Breuer, HP ;
Huber, W ;
Petruccione, F .
PHYSICAL REVIEW E, 1996, 53 (04) :4232-4235