Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation

被引:8
作者
Dsouza, Kevin B. [1 ]
Maslova, Alexandra [2 ]
Al-Jibury, Ediem [3 ,4 ]
Merkenschlager, Matthias [3 ]
Bhargava, Vijay K. [1 ]
Libbrecht, Maxwell W. [2 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC, Canada
[3] Imperial Coll London, Fac Med, Inst Clin Sci, MRC,London Inst Med Sci, London, England
[4] Imperial Coll London, Dept Comp, London, England
基金
英国惠康基金; 加拿大自然科学与工程研究理事会; 英国医学研究理事会;
关键词
PROMOTER INTERACTIONS; ENHANCER; DOMAINS; TRANSCRIPTION; EXPRESSION; PRINCIPLES; DISCOVERY; REGIONS; STATE;
D O I
10.1038/s41467-022-31337-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the availability of chromatin conformation capture experiments, discerning the relationship between the 1D genome and 3D conformation remains a challenge, which limits our understanding of their affect on gene expression and disease. We propose Hi-C-LSTM, a method that produces low-dimensional latent representations that summarize intra-chromosomal Hi-C contacts via a recurrent long short-term memory neural network model. We find that these representations contain all the information needed to recreate the observed Hi-C matrix with high accuracy, outperforming existing methods. These representations enable the identification of a variety of conformation-defining genomic elements, including nuclear compartments and conformation-related transcription factors. They furthermore enable in-silico perturbation experiments that measure the influence of cis-regulatory elements on conformation. Despite the availability of chromatin conformation capture experiments, discerning the relationship between the 1D genome and 3D conformation remains a challenge. Here, the authors propose a method that produces low-dimensional latent representations that summarize intra-chromosomal Hi-C contacts.
引用
收藏
页数:19
相关论文
共 111 条
[1]   XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks [J].
Acosta-Alvear, Diego ;
Zhou, Yiming ;
Blais, Alexandre ;
Tsikitis, Mary ;
Lents, Nathan H. ;
Arias, Carolina ;
Lennon, Christen J. ;
Kluger, Yuval ;
Dynlacht, Brian David .
MOLECULAR CELL, 2007, 27 (01) :53-66
[2]  
Agarwal V., 2019, PREPRINT
[3]   Three-dimensional Epigenome Statistical Model: Genome-wide Chromatin Looping Prediction [J].
Al Bkhetan, Ziad ;
Plewczynski, Dariusz .
SCIENTIFIC REPORTS, 2018, 8
[4]   14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements [J].
Allou, Lila ;
Lambert, Laetitia ;
Amsallem, Daniel ;
Bieth, Eric ;
Edery, Patrick ;
Destree, Anne ;
Rivier, Francois ;
Amor, David ;
Thompson, Elizabeth ;
Nicholl, Julian ;
Harbord, Michael ;
Nemos, Christophe ;
Saunier, Aline ;
Moustaine, Aissa ;
Vigouroux, Adeline ;
Jonveaux, Philippe ;
Philippe, Christophe .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2012, 20 (12) :1216-1223
[5]  
[Anonymous], 2012, Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT
[6]  
[Anonymous], 2012, PREPRINT
[7]  
[Anonymous], 2013, 30 INT C MACH LEARN
[8]   Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data [J].
Ashoor, Haitham ;
Chen, Xiaowen ;
Rosikiewicz, Wojciech ;
Wang, Jiahui ;
Cheng, Albert ;
Wang, Ping ;
Ruan, Yijun ;
Li, Sheng .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]  
Ba J. L., 2016, PREPRINT
[10]   On the existence and functionality of topologically associating domains [J].
Beagan, Jonathan A. ;
Phillips-Cremins, Jennifer E. .
NATURE GENETICS, 2020, 52 (01) :8-16