Adaptive Topic Modeling with Probabilistic Pseudo Feedback in Online Topic Detection

被引:0
|
作者
Tang, Guoyu [1 ]
Xia, Yunqing [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
来源
NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS | 2010年 / 6177卷
关键词
Adaptive topic modeling; probabilistic pseudo feedback; online topic detection; topic detection and tracking;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online topic detection (OTD) system seeks to analyze sequential stories in a real-time manner so as to detect new topics or to associate stories with certain existing topics. To handle new stories more precisely, an adaptive topic modeling method that incorporates probabilistic pseudo feedback is proposed in this paper to tune every topic model with a changed environment. Differently, this method considers every incoming story as pseudo feedback with certain probability, which is the similarity between the story and the topic. Experiment results show that probabilistic pseudo feedback brings promising improvement to online topic detection.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 22 条
  • [1] Incorporating topic transition in topic detection and tracking algorithms
    Zeng, Jianping
    Zhang, Shiyong
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (01) : 227 - 232
  • [2] Online High-Quality Topic Detection for Bulletin Board Systems
    Xu, Jungang
    Li, Hui
    Zhao, Yan
    He, Ben
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (02): : 255 - 265
  • [3] Online web video topic detection and tracking with semi-supervised learning
    Li, Guorong
    Jiang, Shuqiang
    Zhang, Weigang
    Pang, Junbiao
    Huang, Qingming
    MULTIMEDIA SYSTEMS, 2016, 22 (01) : 115 - 125
  • [4] Online web video topic detection and tracking with semi-supervised learning
    Guorong Li
    Shuqiang Jiang
    Weigang Zhang
    Junbiao Pang
    Qingming Huang
    Multimedia Systems, 2016, 22 : 115 - 125
  • [5] Simple Semantics in Topic Detection and Tracking
    Juha Makkonen
    Helena Ahonen-Myka
    Marko Salmenkivi
    Information Retrieval, 2004, 7 : 347 - 368
  • [6] Indices of novelty for emerging topic detection
    Tu, Yi-Ning
    Seng, Jia-Lang
    INFORMATION PROCESSING & MANAGEMENT, 2012, 48 (02) : 303 - 325
  • [7] Development and Research of Topic Detection and Tracking
    Chen, Yuning
    Liu, Lianzhong
    PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016, : 170 - 173
  • [8] Simple semantics in topic detection and tracking
    Makkonen, J
    Ahonen-Myka, H
    Salmenkivi, M
    INFORMATION RETRIEVAL, 2004, 7 (3-4): : 347 - 368
  • [9] A dynamic probabilistic model to visualise topic evolution in text streams
    Kabán, A
    Girolami, MA
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2002, 18 (2-3) : 107 - 125
  • [10] A Dynamic Probabilistic Model to Visualise Topic Evolution in Text Streams
    Ata Kabán
    Mark A. Girolami
    Journal of Intelligent Information Systems, 2002, 18 : 107 - 125