Modeling of bremsstrahlung emission from the confined runaway electrons and applications to the hard x-ray monitor of ITER

被引:10
作者
Pandya, Santosh P. [1 ,5 ]
Core, Laura [2 ]
Barnsley, Robin [3 ]
Rosato, Joel [4 ]
Reichle, Roger [3 ]
Lehnen, Michael [3 ]
Bertalot, Luciano [3 ]
Walsh, Michael [3 ]
机构
[1] FIRCROFT, Lingley House,120 Birchwood Point,Birchwood Blvd, Warrington WA3 7QH, Cheshire, England
[2] Arkadia Technol, 255 Rue Paul Langevin, F-13100 Aix En Provence, France
[3] ITER Org, Route Vinon Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[4] Aix Marseille Univ, CNRS, PIIM, UMR 7345,Ctr St Jerome, Case 232, F-13397 Marseille 20, France
[5] Working Lab ITER Org, St Paul Les Durance, France
关键词
runaway electrons; bremsstrahlung emission; tokamak; ITER; forward modeling; hard x-ray monitor; gamma-ray spectrometer; HYBRID CURRENT DRIVE; DISRUPTIONS; TERMINATION; GENERATION; SIMULATION; SPECTRA; PLASMA;
D O I
10.1088/1402-4896/aaded0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The importance of runaway electron (RE) detection, analysis of its parameters and suppression or mitigation is well recognized for large size tokamaks such as ITER. One of the well-established detection techniques is hard x-ray spectrometry that detects bremsstrahlung emission typically in the MeV range from the REs. It provides space, time and energy resolved measurements, which can also be utilized for the reconstruction of the RE energy distribution function. In this paper, forward modeling has been carried out for the detection of the confined REs and a numerical tool is developed. It calculates analytically anisotropic bremsstrahlung emissivity at each spatial position in the plasma in terms of several plasma, RE and geometrical parameters. The simulation provides line integrated energy resolved spectra of bremsstrahlung photons. The expected bremsstrahlung emission signal during plasma disruptions scenario as measured with the ITER hard x-ray monitor has been simulated for the first time aiming on optimizing the design parameters of this diagnostic. The possible dynamic range for the detection of confined REs is studied as well. The effect of the shape of the runaway distribution function in the momentum space on the observed diagnostic signal is also studied and briefly discussed.
引用
收藏
页数:14
相关论文
共 51 条
[1]   ON SELF-CONSISTENT RAY-TRACING AND FOKKER-PLANCK MODELING OF THE HARD X-RAY-EMISSION DURING LOWER-HYBRID CURRENT DRIVE IN TOKAMAKS [J].
BIZARRO, JP ;
PEYSSON, Y ;
BONOLI, PT ;
CARRASCO, J ;
DEWIT, TD ;
FUCHS, V ;
HOANG, GT ;
LITAUDON, X ;
MOREAU, D ;
POCHEAU, C ;
SHKAROFSKY, IP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (09) :3276-3283
[2]   DETERMINATION OF THE SUPRATHERMAL ELECTRON-DISTRIBUTION FUNCTION DURING LOWER-HYBRID CURRENT DRIVE IN JET [J].
BRUSATI, M ;
BARTLETT, DV ;
EKEDAHL, A ;
FROISSARD, P ;
AIROLDI, A ;
RAMPONI, G ;
DASILVA, RP ;
PEYSSON, Y .
NUCLEAR FUSION, 1994, 34 (01) :23-42
[3]   RELATIVISTIC LIMITATIONS ON RUNAWAY ELECTRONS [J].
CONNOR, JW ;
HASTIE, RJ .
NUCLEAR FUSION, 1975, 15 (03) :415-424
[4]   Chapter 7: Diagnostics [J].
FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein, Netherlands ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
Nucl Fusion, 2007, 6 (S337-S384) :S337-S384
[5]   Dynamics of high energy runaway electrons in the Frascati Tokamak Upgrade [J].
Esposito, B ;
Martín-Solís, JR ;
Poli, FM ;
Mier, JA ;
Sánchez, R ;
Panaccione, L .
PHYSICS OF PLASMAS, 2003, 10 (06) :2350-2360
[6]   Magnetic field threshold for runaway generation in tokamak disruptions [J].
Fulop, T. ;
Smith, H. M. ;
Pokol, G. .
PHYSICS OF PLASMAS, 2009, 16 (02)
[7]   GENERATION AND LOSS OF RUNAWAY ELECTRONS FOLLOWING DISRUPTIONS IN JET [J].
GILL, RD .
NUCLEAR FUSION, 1993, 33 (11) :1613-1625
[8]  
Haug E, 2014, Z NATURFORSCH A, V30, P1099
[9]   Runaway acceleration during magnetic reconnection in tokamaks [J].
Helander, P ;
Eriksson, LG ;
Andersson, F .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 :B247-B262
[10]   Chapter 3:: MHD stability, operational limits and disruptions [J].
Hender, T. C. ;
Wesley, J. C. ;
Bialek, J. ;
Bondeson, A. ;
Boozer, A. H. ;
Buttery, R. J. ;
Garofalo, A. ;
Goodman, T. P. ;
Granetz, R. S. ;
Gribov, Y. ;
Gruber, O. ;
Gryaznevich, M. ;
Giruzzi, G. ;
Guenter, S. ;
Hayashi, N. ;
Helander, P. ;
Hegna, C. C. ;
Howell, D. F. ;
Humphreys, D. A. ;
Huysmans, G. T. A. ;
Hyatt, A. W. ;
Isayama, A. ;
Jardin, S. C. ;
Kawano, Y. ;
Kellman, A. ;
Kessel, C. ;
Koslowski, H. R. ;
La Haye, R. J. ;
Lazzaro, E. ;
Liu, Y. Q. ;
Lukash, V. ;
Manickam, J. ;
Medvedev, S. ;
Mertens, V. ;
Mirnov, S. V. ;
Nakamura, Y. ;
Navratil, G. ;
Okabayashi, M. ;
Ozeki, T. ;
Paccagnella, R. ;
Pautasso, G. ;
Porcelli, F. ;
Pustovitov, V. D. ;
Riccardo, V. ;
Sato, M. ;
Sauter, O. ;
Schaffer, M. J. ;
Shimada, M. ;
Sonato, P. ;
Strait, E. J. .
NUCLEAR FUSION, 2007, 47 (06) :S128-S202