Defect-Free Single-Layer Graphene by 10 s Microwave Solid Exfoliation and Its Application for Catalytic Water Splitting

被引:21
作者
Bayazit, Mustafa K. [1 ]
Xiong, Lunqiao [1 ]
Jiang, Chaoran [1 ]
Moniz, Savio J. A. [1 ]
White, Edward [2 ]
Shaffer, Milo S. P. [2 ]
Tang, Junwang [1 ]
机构
[1] UCL, Dept Chem Engn, London WC1E 7JE, England
[2] Imperial Coll London, Dept Chem, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
defect-free single-layer graphene; fast production; special mode microwave-intensified process; conductivity; oxygen evolution reaction; water splitting; RAMAN-SPECTROSCOPY; INTERCALATION COMPOUNDS; GRAPHITE; OXYGEN; TRANSPARENT; EFFICIENCY; FILMS;
D O I
10.1021/acsami.1c03906
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mass production of defect-free single-layer graphene flakes (SLGFs) by a cost-effective approach is still very challenging. Here, we report such single-layer graphene flakes (SLGFs) (>90%) prepared by a nondestructive, energy-efficient, and easy up-scalable physical approach. These high-quality graphene flakes are attributed to a novel 10 s microwave-modulated solid-state approach, which not only fast exfoliates graphite in air but also self-heals the surface of graphite to remove the impurities. The fabricated high-quality graphene films (similar to 200 nm) exhibit a sheet resistance of similar to 280 Omega/sq without any chemical or physical post-treatment. Furthermore, graphene-incorporated Ni-Fe electrodes represent a remarkable similar to 140 mA/cm(2) current for the catalytic water oxidation reaction compared with the pristine Ni-Fe electrode (similar to 10 mA/cm(2)) and a 120 mV cathodic shift in onset potential under identical experimental conditions, together with a faradic efficiency of >90% for an ideal ratio of H-2 and O-2 production from water. All these excellent performances are attributed to extremely high conductivity of the defect-free graphene flakes.
引用
收藏
页码:28600 / 28609
页数:10
相关论文
共 47 条
[1]   High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation [J].
Achee, Thomas C. ;
Sun, Wanmei ;
Hope, Joshua T. ;
Quitzau, Samuel G. ;
Sweeney, Charles Brandon ;
Shah, Smit A. ;
Habib, Touseef ;
Green, Micah J. .
SCIENTIFIC REPORTS, 2018, 8
[2]   Flash Graphene from Plastic Waste [J].
Algozeeb, Wala A. ;
Savas, Paul E. ;
Duy Xuan Luong ;
Chen, Weiyin ;
Kittrell, Carter ;
Bhat, Mahesh ;
Shahsavari, Rouzbeh ;
Tour, James M. .
ACS NANO, 2020, 14 (11) :15595-15604
[3]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[4]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[5]   Microwave- and Nitronium Ion-Enabled Rapid and Direct Production of Highly Conductive Low-Oxygen Graphene [J].
Chiu, Pui Lam ;
Mastrogiovanni, Daniel D. T. ;
Wei, Dongguang ;
Louis, Cassandre ;
Jeong, Min ;
Yu, Guo ;
Saad, Peter ;
Flach, Carol R. ;
Mendelsohn, Richard ;
Garfunkel, Eric ;
He, Huixin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (13) :5850-5856
[6]   Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions [J].
De, Sukanta ;
King, Paul J. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Doherty, Evelyn M. ;
Hernandez, Yenny ;
Duesberg, Georg S. ;
Coleman, Jonathan N. .
SMALL, 2010, 6 (03) :458-464
[7]   A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water [J].
Dong, Lei ;
Chen, Zhongxin ;
Zhao, Xiaoxu ;
Ma, Jianhua ;
Lin, Shan ;
Li, Mengxiong ;
Bao, Yang ;
Chu, Leiqiang ;
Leng, Kai ;
Lu, Hongbin ;
Loh, Kian Ping .
NATURE COMMUNICATIONS, 2018, 9
[8]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[9]   CRYSTAL STRUCTURE OF GRAPHITE-BROMINE COMPOUNDS [J].
EELES, WT ;
TURNBULL, JA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 283 (1393) :179-&
[10]   IN-PLANE INTERCALATE LATTICE MODES IN GRAPHITE-BROMINE USING RAMAN-SPECTROSCOPY [J].
EKLUND, PC ;
KAMBE, N ;
DRESSELHAUS, G ;
DRESSELHAUS, MS .
PHYSICAL REVIEW B, 1978, 18 (12) :7069-7079