Generation of Free Carriers in MoSe2 Monolayers Via Energy Transfer from CsPbBr3 Nanocrystals

被引:19
作者
Asaithambi, Aswin [1 ]
Tofighi, Nastaran Kazemi [1 ]
Curreli, Nicola [1 ]
De Franco, Manuela [2 ,3 ]
Patra, Aniket [4 ,5 ]
Petrini, Nicolo [1 ,6 ]
Baranov, Dmitry [7 ]
Manna, Liberato [7 ]
Di Stasio, Francesco [2 ]
Kriegel, Ilka [1 ]
机构
[1] Ist Italiano Tecnol, Funct Nanosyst, Via Morego 30, I-16163 Genoa, Italy
[2] Ist Italiano Tecnol, Photon Nanomat, Via Morego 30, I-16163 Genoa, Italy
[3] Univ Genoa, Dipartimento Chim & Chim Ind, Via Dodecaneso 31, I-16146 Genoa, Italy
[4] Ist Italiano Tecnol, Optoelect, Via Morego 30, I-16163 Genoa, Italy
[5] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy
[6] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy
[7] Ist Italiano Tecnol, Nanochem Dept, Via Morego 30, I-16163 Genoa, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
energy transfer; excitons; free carrier generation; perovskite nanocrystals; transition metal dichalcogenides; trions; PHOTOLUMINESCENCE; PHOTODETECTORS; 2D; PHOTOTRANSISTORS; DYNAMICS; EXCITONS;
D O I
10.1002/adom.202200638
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transition metal dichalcogenide (TMDCs) monolayers make an excellent component in optoelectronic devices such as photodetectors and phototransistors. Selenide-based TMDCs, specifically molybdenum diselenide (MoSe2) monolayers with low defect densities, show much faster photoresponses compared to their sulfide counterpart. However, the typically low absorption of the atomically thin MoSe2 monolayer and high exciton binding energy limit the photogeneration of charge carriers. Yet, integration of light-harvesting materials with TMDCs can produce increased photocurrents via energy transfer. In this article, it is demonstrated that the interaction of cesium lead bromide (CsPbBr3) nanocrystals with MoSe2 monolayers results into an energy transfer efficiency of over 86%, as ascertained from the quenching and decay dynamics of the CsPbBr3 nanocrystals emission. Notably, the increase in the MoSe2 monolayer emission in the heterostructure accounts only for 33% of the transferred energy. It is found that part of the excess energy generates directly free carriers in the MoSe2 monolayer, as a result of the transfer of energy into the exciton continuum. The efficiency of the heterostructure via enhanced photocurrents with respect to the single material unit is proven. These results demonstrate a viable route to overcome the high exciton binding energy typical for TMDCs, as such having an impact on optoelectronic processes that rely on efficient exciton dissociation.
引用
收藏
页数:9
相关论文
共 49 条
[21]   Nano Ball-Milling Using Titania Nanoparticles to Anchor Cesium Lead Bromine Nanocrystals and Energy Transfer Characteristics in TiO2@CsPbBr3Architecture [J].
Liu, Yufeng ;
Yang, Yongge ;
Chen, Peng ;
Shan, Yufeng ;
Li, Yang ;
Shi, Jichao ;
Hou, Jingshan ;
Zhang, Na ;
Zhao, Guoying ;
Xu, Jiayue ;
Fang, Yongzheng ;
Dai, Ning .
SMALL, 2020, 16 (40)
[22]   Chiral Perovskite Heterostructure Films of CsPbBr3 Quantum Dots and 2D Chiral Perovskite with Circularly Polarized Luminescence Performance and Energy Transfer [J].
Wang, Yuan ;
Song, Mu-Sen ;
Zhao, Jiaqi ;
Li, Zhen ;
Wang, Tinglei ;
Wang, Hai ;
Wang, Hai-Yu ;
Wang, Yu .
ACS NANO, 2024, 18 (33) :22334-22343
[23]   Energy transfer from SnO2 host to Eu3+ ions and photoluminescence quenching of SnO2:Eu3+ nanocrystals [J].
Van, Tuan Pham ;
Hoai, Thu Luong ;
Ngoc, Khiem Tran .
OPTICAL MATERIALS, 2024, 147
[24]   Double perovskite Cs2NaInCl6 nanocrystals with intense dual-emission via self-trapped exciton-to-Tb3+ dopant energy transfer [J].
Li, Huwei ;
Tian, Long ;
Shi, Zhan ;
Li, Yao ;
Li, Chengyu ;
Feng, Jing ;
Zhang, Hongjie .
JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (29) :10609-10615
[25]   All-Inorganic CsPbBr3 Perovskite Nanocrystals/2D Non-Layered Cadmium Sulfide Selenide for High-Performance Photodetectors by Energy Band Alignment Engineering [J].
Peng, Mingfa ;
Ma, Yulong ;
Zhang, Lei ;
Cong, Shan ;
Hong, Xuekun ;
Gu, Yiheng ;
Kuang, Yawei ;
Liu, Yushen ;
Wen, Zhen ;
Sun, Xuhui .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (42)
[26]   Internal energy transfer from nanocrystals to Co2+ions at Bi2S3 tetrahedral sites embedded in host glass [J].
Guimaraes, E. V. ;
Silva, A. S. ;
Azevedo, G. A. ;
Dantas, N. O. ;
Silva, R. S. .
JOURNAL OF LUMINESCENCE, 2023, 255
[27]   Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties [J].
Acharyya, Paribesh ;
Pal, Provas ;
Samanta, Pralok K. ;
Sarkar, Arka ;
Pati, Swapan K. ;
Biswas, Kanishka .
NANOSCALE, 2019, 11 (09) :4001-4007
[28]   Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals [J].
Zhang, Anran ;
Zhou, Xinquan ;
Gu, Ranran ;
Xia, Zhiguo .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (06) :1456-1461
[29]   Sensitization of Tb3+ and Dy3+ emission in Li4Ca(BO3)2 via energy transfer from Ce3+ and study of energy transfer mechanism [J].
Yerpude, Mangesh M. ;
Nair, Govind B. ;
Dhoble, S. J. ;
Bagade, S. H. ;
Swart, H. C. .
OPTIK, 2020, 218
[30]   Enhancing exciton-to-Mn2+energy transfer and emission efficiency in Mn2+-doped CsPbCl3 perovskite nanocrystals via CaCl2 post-treatment [J].
Xing, Ke ;
Cao, Sheng ;
Song, Yusheng ;
Chen, Mingyan ;
Gu, Zhuwei ;
Li, Qiuyan ;
Han, Xinxin ;
Zou, Bingsuo ;
Zhao, Jialong .
APPLIED SURFACE SCIENCE, 2024, 673