Nonlinear Soft Sensor Development Based on Relevance Vector Machine
被引:42
作者:
Ge, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
Ge, Zhiqiang
[1
]
Song, Zhihuan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R ChinaZhejiang Univ, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
Song, Zhihuan
[1
,2
]
机构:
[1] Zhejiang Univ, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R China
This paper proposes an effective nonlinear soft sensor based on relevance vector machine (RVM), which was originally proposed in the machine learning area. Compared to the widely used support vector machine (SVM) and least-squares support vector machine (LSSVM) based soft sensors, RVM gives a more sparse model structure, which can greatly reduce computational complexity for online prediction. While SVM/LSSVM can only provide a point estimation of the prediction result, RVM gives a probabilistic prediction result, which is more sophisticated for the soft sensor application. Furthermore, RVM can successfully avoid several drawbacks of the traditional support vector machine type method, such as kernel function limitation, parameter tuning complexity, and etc. Due to the advantages of RVM, a practical application of this method is made for soft sensor modeling in this paper. To evaluate the performance of the developed soft sensor, two case studies are demonstrated, which both support that RVM performs much better than other methods for soft sensing.
机构:
Zhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R China
Yuan, Xiaofeng
Ye, Lingjian
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R ChinaZhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R China
Ye, Lingjian
Bao, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R China
Bao, Liang
Ge, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R China
Ge, Zhiqiang
Song, Zhihuan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Inst Ind Proc Control, Coll Control Sci & Engn, State Key Lab Ind Control Technol,Inst Ind Proc C, Hangzhou 310027, Zhejiang, Peoples R China
机构:
Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
China North Vehicle Res Inst, Syst Gen Technol Dept, Beijing 100072, Peoples R ChinaUniv Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
Qian, Qingting
Chang, Fu
论文数: 0引用数: 0
h-index: 0
机构:
China North Vehicle Res Inst, Syst Gen Technol Dept, Beijing 100072, Peoples R ChinaUniv Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
Chang, Fu
Dong, Qianqian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
Dong, Qianqian
Li, Min
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
Li, Min
Xu, Jinwu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
机构:
Univ Zagreb, Dept Measurements & Proc Control, Fac Chem Engn & Technol, Sayska C 16-5a, Zagreb 10000, CroatiaUniv Zagreb, Dept Measurements & Proc Control, Fac Chem Engn & Technol, Sayska C 16-5a, Zagreb 10000, Croatia
Herceg, Srecko
Andrijic, Zeljka Ujevic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zagreb, Dept Measurements & Proc Control, Fac Chem Engn & Technol, Sayska C 16-5a, Zagreb 10000, CroatiaUniv Zagreb, Dept Measurements & Proc Control, Fac Chem Engn & Technol, Sayska C 16-5a, Zagreb 10000, Croatia
Andrijic, Zeljka Ujevic
Bolf, Nenad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zagreb, Dept Measurements & Proc Control, Fac Chem Engn & Technol, Sayska C 16-5a, Zagreb 10000, CroatiaUniv Zagreb, Dept Measurements & Proc Control, Fac Chem Engn & Technol, Sayska C 16-5a, Zagreb 10000, Croatia