Existence of homoclinic solutions for a fourth order differential equation with a parameter

被引:20
作者
Li, Tiexiang [1 ]
Sun, Juntao [2 ]
Wu, Tsung-Fang [3 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
[2] Sharif Univ Technol, Sch Sci, Zibo 255049, Peoples R China
[3] Univ KwaZulu Natal, Dept Appl Math, Kaohsiung 811, Taiwan
关键词
Fourth order differential equations; Homoclinic solutions; Mountain pass theorem; Variational methods; SWIFT-HOHENBERG; SYSTEMS;
D O I
10.1016/j.amc.2014.11.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of homoclinic solutions for a class of fourth order differential equations. By using variational methods, the existence and the non-existence of nontrivial homoclinic solutions are obtained, depending on a parameter. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:499 / 506
页数:8
相关论文
共 15 条
[1]  
Amick CJ, 1992, European J Appl Math, V3, P97, DOI DOI 10.1017/S0956792500000735
[2]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[3]   Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods [J].
Buffoni, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (03) :443-462
[4]   Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations [J].
Chen, Y ;
McKenna, PJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) :325-355
[5]   NATURE OF SPATIAL CHAOS [J].
COULLET, P ;
ELPHICK, C ;
REPAUX, D .
PHYSICAL REVIEW LETTERS, 1987, 58 (05) :431-434
[6]   BISTABLE SYSTEMS WITH PROPAGATING FRONTS LEADING TO PATTERN-FORMATION [J].
DEE, GT ;
VANSAARLOOS, W .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2641-2644
[7]  
Ekeland I., 1990, Convexity methods in Hamiltonian mechanics
[8]   SWIFT-HOHENBERG EQUATION FOR LASERS [J].
LEGA, J ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW LETTERS, 1994, 73 (22) :2978-2981
[9]   Remarks on homoclinic solutions for semilinear fourth-order ordinary differential equations without periodicity [J].
Li Cheng-yue .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01) :49-55
[10]  
Peletier L. A., 2001, Spatial Patterns: Higher Order Models in Physics and Mechanics