We have studied terahertz absorption of samples containing two layers of self-aligned, self-assembled InAs quantum dots separated by a thin GaAs barrier. The vertically coupled dots were charged with electrons by applying a voltage bias between a metal gate and a doped layer beneath the dots. For a positive gate bias corresponding to flatband conditions, an absorption peak was observed near 10 meV (2.4 THz). The absorption is attributed to the inhomogeneously broadened transition between the quantum mechanically split levels (bonding and antibonding states) in the vertically coupled quantum dots. (C) 2000 American Institute of Physics. [S0003-6951(00)04252-2].