Determination of the blow-up rate for a critical semilinear wave equation

被引:69
作者
Merle, F
Zaag, H
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
[2] Ecole Normale Super, Dept Math & Applicat, CNRS, UMR 8553, F-75005 Paris, France
关键词
D O I
10.1007/s00208-004-0587-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine the blow-up rate for the semilinear wave equation with critical power nonlinearity related to the conformal invariance.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 17 条
[1]  
Alinhac S., 1995, PROGR NONLINEAR DIFF, V17
[2]  
Antonini C, 2001, INT MATH RES NOTICES, V2001, P1141
[3]   THE BLOW-UP BOUNDARY FOR NONLINEAR-WAVE EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :223-241
[4]   Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity [J].
Filippas, S ;
Herrero, MA ;
Velázquez, JJL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2004) :2957-2982
[5]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884
[6]   BLOW-UP BEHAVIOR OF ONE-DIMENSIONAL SEMILINEAR PARABOLIC EQUATIONS [J].
HERRERO, MA ;
VELAZQUEZ, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (02) :131-189
[8]   BLOW-UP SURFACES FOR NONLINEAR-WAVE EQUATIONS .1. [J].
KICHENASSAMY, S ;
LITTMAN, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (3-4) :431-452
[9]   BLOW-UP SURFACES FOR NONLINEAR-WAVE EQUATIONS .2. [J].
KICHENASSAMY, S ;
LITTMAN, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (11) :1869-1899
[10]   ON EXISTENCE AND SCATTERING WITH MINIMAL REGULARITY FOR SEMILINEAR WAVE-EQUATIONS [J].
LINDBLAD, H ;
SOGGE, CD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) :357-426