Physically inspired deep learning of molecular excitations and photoemission spectra

被引:50
作者
Westermayr, Julia [1 ]
Maurer, Reinhard J. [1 ]
机构
[1] Univ Warwick, Dept Chem, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
ORBITAL ENERGIES; ACCURATE; ELECTRON; AZULENE; PREDICTIONS; DATABASE; STATES;
D O I
10.1039/d1sc01542g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modern functional materials consist of large molecular building blocks with significant chemical complexity which limits spectroscopic property prediction with accurate first-principles methods. Consequently, a targeted design of materials with tailored optoelectronic properties by high-throughput screening is bound to fail without efficient methods to predict molecular excited-state properties across chemical space. In this work, we present a deep neural network that predicts charged quasiparticle excitations for large and complex organic molecules with a rich elemental diversity and a size well out of reach of accurate many body perturbation theory calculations. The model exploits the fundamental underlying physics of molecular resonances as eigenvalues of a latent Hamiltonian matrix and is thus able to accurately describe multiple resonances simultaneously. The performance of this model is demonstrated for a range of organic molecules across chemical composition space and configuration space. We further showcase the model capabilities by predicting photoemission spectra at the level of the GW approximation for previously unseen conjugated molecules.
引用
收藏
页码:10755 / 10764
页数:10
相关论文
共 93 条
[51]   Electronic spectra from TDDFT and machine learning in chemical space [J].
Ramakrishnan, Raghunathan ;
Hartmann, Mia ;
Tapavicza, Enrico ;
von Lilienfeld, O. Anatole .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (08)
[52]   Quantum chemistry structures and properties of 134 kilo molecules [J].
Ramakrishnan, Raghunathan ;
Dral, Pavlo O. ;
Rupp, Matthias ;
von Lilienfeld, O. Anatole .
SCIENTIFIC DATA, 2014, 1
[53]   Structural and excited-state properties of oligoacene crystals from first principles [J].
Rangel, Tonatiuh ;
Berland, Kristian ;
Sharifzadeh, Sahar ;
Brown-Altvater, Florian ;
Lee, Kyuho ;
Hyldgaard, Per ;
Kronik, Leeor ;
Neaton, Jeffrey B. .
PHYSICAL REVIEW B, 2016, 93 (11)
[54]   A Deep Neural Network for the Rapid Prediction of X-ray Absorption Spectra [J].
Rankine, C. D. ;
Madkhali, M. M. M. ;
Penfold, T. J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (21) :4263-4270
[55]   The GW approximation: content, successes and limitations [J].
Reining, Lucia .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (03)
[56]   Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning [J].
Rupp, Matthias ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert ;
von Lilienfeld, O. Anatole .
PHYSICAL REVIEW LETTERS, 2012, 108 (05)
[57]   Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning [J].
Sanchez-Gonzalez, A. ;
Micaelli, P. ;
Olivier, C. ;
Barillot, T. R. ;
Ilchen, M. ;
Lutman, A. A. ;
Marinelli, A. ;
Maxwell, T. ;
Achner, A. ;
Agaker, M. ;
Berrah, N. ;
Bostedt, C. ;
Bozek, J. D. ;
Buck, J. ;
Bucksbaum, P. H. ;
Montero, S. Carron ;
Cooper, B. ;
Cryan, J. P. ;
Dong, M. ;
Feifel, R. ;
Frasinski, L. J. ;
Fukuzawa, H. ;
Galler, A. ;
Hartmann, G. ;
Hartmann, N. ;
Helml, W. ;
Johnson, A. S. ;
Knie, A. ;
Lindahl, A. O. ;
Liu, J. ;
Motomura, K. ;
Mucke, M. ;
O'Grady, C. ;
Rubensson, J. -E. ;
Simpson, E. R. ;
Squibb, R. J. ;
Sathe, C. ;
Ueda, K. ;
Vacher, M. ;
Walke, D. J. ;
Zhaunerchyk, V. ;
Coffee, R. N. ;
Marangos, J. P. .
NATURE COMMUNICATIONS, 2017, 8
[58]  
Schad Kristof T, 2021, arXiv
[59]   A new asymmetric Pseudo-Voigt function for more efficient fitting of XPS lines (vol 46, pg 505, 2014) [J].
Schmid, Martin ;
Steinrueck, Hans-Peter ;
Gottfried, J. Michael .
SURFACE AND INTERFACE ANALYSIS, 2015, 47 (11) :1080-1080
[60]   A new asymmetric Pseudo-Voigt function for more efficient fitting of XPS lines [J].
Schmid, Martin ;
Steinrueck, Hans-Peter ;
Gottfried, J. Michael .
SURFACE AND INTERFACE ANALYSIS, 2014, 46 (08) :505-511