DASHMM: Dynamic Adaptive System for Hierarchical Multipole Methods

被引:12
作者
DeBuhr, J. [1 ]
Zhang, B. [1 ]
Tsueda, A. [2 ]
Tilstra-Smith, V. [3 ]
Sterling, T. [1 ]
机构
[1] Indiana Univ, Sch Informat & Comp, Ctr Res Extreme Scale Technol, Bloomington, IN 47404 USA
[2] Loyola Univ, Coll Arts & Sci, Chicago, IL 60660 USA
[3] Cent Coll, Dept Math & Phys, Pella, IA 50219 USA
基金
美国国家科学基金会;
关键词
Barnes-Hut method; fast multipole method; Laplace potential; ParalleX; runtime software; PARALLEL IMPLEMENTATION; ALGORITHMS;
D O I
10.4208/cicp.030316.310716sw
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present DASHMM, a general library implementing multipole methods (including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dynamic adaptive runtime techniques provided by the HPX-5 system to parallelize the resulting multipole moment computation. The result is a library that is easy-to-use, extensible, scalable, efficient, and portable. We present both the abstractions defined by DASHMM as well as the specific features of HPX-5 that allow the library to execute scalably and efficiently.
引用
收藏
页码:1106 / 1126
页数:21
相关论文
共 50 条
  • [31] FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions
    Huang, Jingfang
    Jia, Jun
    Zhang, Bo
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2331 - 2338
  • [32] A Comparison of Hierarchical Biclustering Ensemble Methods
    Padilha, Victor A.
    de Carvalho, Andre C. P. L. F.
    2017 6TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2017, : 318 - 323
  • [33] A Framework for Parallelizing Hierarchical Clustering Methods
    Lattanzi, Silvio
    Lavastida, Thomas
    Lu, Kefu
    Moseley, Benjamin
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 73 - 89
  • [34] Hierarchical System Modeling
    Al-Hmouz, Rami
    Pedrycz, Witold
    Balamash, Abdullah Saeed
    Morfeq, Ali
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (01) : 258 - 269
  • [35] Comparison of the Fast Multipole and Ewald methods for the evaluation of the magnetodipolar field in disordered systems
    Gorn, N. L.
    Berkov, D. V.
    Goernert, P.
    Stock, D.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 2829 - 2831
  • [36] An Adaptive Fast Multipole Boundary Element Method for Three-dimensional Potential Problems
    Liang Shen
    Yijun J. Liu
    Computational Mechanics, 2007, 39 : 681 - 691
  • [37] Two accelerated isogeometric boundary element method formulations: fast multipole method and hierarchical matrices method
    Bastos, Emerson
    de Albuquerque, Eder Lima
    Campos, Lucas Silveira
    Wrobel, Luiz Carlos
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2022, 19 (07)
  • [38] An adaptive fast multipole boundary element method for three-dimensional potential problems
    Shen, Liang
    Liu, Yijun J.
    COMPUTATIONAL MECHANICS, 2007, 39 (06) : 681 - 691
  • [39] Accelerating Particle Filter Using Randomized Multiscale and Fast Multipole Type Methods
    Shabat, Gil
    Shmueli, Yaniv
    Bermanis, Amit
    Averbuch, Amir
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (07) : 1396 - 1407
  • [40] RECFMM: Recursive Parallelization of the Adaptive Fast Multipole Method for Coulomb and Screened Coulomb Interactions
    Zhang, Bo
    Huang, Jingfang
    Pitsianis, Nikos P.
    Sun, Xiaobai
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (02) : 534 - 550