DASHMM: Dynamic Adaptive System for Hierarchical Multipole Methods

被引:12
作者
DeBuhr, J. [1 ]
Zhang, B. [1 ]
Tsueda, A. [2 ]
Tilstra-Smith, V. [3 ]
Sterling, T. [1 ]
机构
[1] Indiana Univ, Sch Informat & Comp, Ctr Res Extreme Scale Technol, Bloomington, IN 47404 USA
[2] Loyola Univ, Coll Arts & Sci, Chicago, IL 60660 USA
[3] Cent Coll, Dept Math & Phys, Pella, IA 50219 USA
基金
美国国家科学基金会;
关键词
Barnes-Hut method; fast multipole method; Laplace potential; ParalleX; runtime software; PARALLEL IMPLEMENTATION; ALGORITHMS;
D O I
10.4208/cicp.030316.310716sw
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present DASHMM, a general library implementing multipole methods (including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dynamic adaptive runtime techniques provided by the HPX-5 system to parallelize the resulting multipole moment computation. The result is a library that is easy-to-use, extensible, scalable, efficient, and portable. We present both the abstractions defined by DASHMM as well as the specific features of HPX-5 that allow the library to execute scalably and efficiently.
引用
收藏
页码:1106 / 1126
页数:21
相关论文
共 50 条
  • [21] Dynamic and Hierarchical Load-Balancing Techniques Applied to Parallel Branch-and-Bound Methods
    Herrera, Juan F. R.
    Casado, Leocadio G.
    Hendrix, Eligius M. T.
    Paulavicius, Remigijus
    Zilinskas, Julius
    2013 EIGHTH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC 2013), 2013, : 497 - 502
  • [22] A genetic programming based learning system to derive multipole and local expansions for the fast multipole method
    Razavi, Seyed Naser
    Gaud, Nicolas
    Koukam, Abderrafiaa
    Mozayani, Nasser
    AI COMMUNICATIONS, 2012, 25 (04) : 305 - 319
  • [23] Fast multipole methods for approximating a function from sampling values
    Guidong Liu
    Shuhuang Xiang
    Numerical Algorithms, 2017, 76 : 727 - 743
  • [24] Fast multipole methods on a cluster of GPUs for the meshless simulation of turbulence
    Yokota, R.
    Narumi, T.
    Sakamaki, R.
    Kameoka, S.
    Obi, S.
    Yasuoka, K.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2066 - 2078
  • [25] Fast multipole methods for approximating a function from sampling values
    Liu, Guidong
    Xiang, Shuhuang
    NUMERICAL ALGORITHMS, 2017, 76 (03) : 727 - 743
  • [26] An Adaptive Fast Multipole Approach to 2D Wave Propagation
    Mallardo, V.
    Aliabadi, M. H.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 87 (02): : 77 - 96
  • [27] A fast adaptive multipole algorithm for calculating screened Coulomb (Yukawa) interactions
    Boschitsch, AH
    Fenley, MO
    Olson, WK
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) : 212 - 241
  • [28] An efficient preconditioner for adaptive Fast Multipole accelerated Boundary Element Methods to model time-harmonic 3D wave propagation
    Amlani, Faisal
    Chaillat, Stephanie
    Loseille, Adrien
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 352 : 189 - 210
  • [29] Prognostics Using an Adaptive Self-Cognizant Dynamic System Approach
    Bai, Guangxing
    Wang, Pingfeng
    IEEE TRANSACTIONS ON RELIABILITY, 2016, 65 (03) : 1427 - 1437
  • [30] On fast multipole methods for Volterra integral equations with highly oscillatory kernels
    Zhang, Qingyang
    Xiang, Shuhuang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 535 - 554