DASHMM: Dynamic Adaptive System for Hierarchical Multipole Methods

被引:12
作者
DeBuhr, J. [1 ]
Zhang, B. [1 ]
Tsueda, A. [2 ]
Tilstra-Smith, V. [3 ]
Sterling, T. [1 ]
机构
[1] Indiana Univ, Sch Informat & Comp, Ctr Res Extreme Scale Technol, Bloomington, IN 47404 USA
[2] Loyola Univ, Coll Arts & Sci, Chicago, IL 60660 USA
[3] Cent Coll, Dept Math & Phys, Pella, IA 50219 USA
基金
美国国家科学基金会;
关键词
Barnes-Hut method; fast multipole method; Laplace potential; ParalleX; runtime software; PARALLEL IMPLEMENTATION; ALGORITHMS;
D O I
10.4208/cicp.030316.310716sw
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present DASHMM, a general library implementing multipole methods (including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dynamic adaptive runtime techniques provided by the HPX-5 system to parallelize the resulting multipole moment computation. The result is a library that is easy-to-use, extensible, scalable, efficient, and portable. We present both the abstractions defined by DASHMM as well as the specific features of HPX-5 that allow the library to execute scalably and efficiently.
引用
收藏
页码:1106 / 1126
页数:21
相关论文
共 50 条
  • [1] Revision of DASHMM: Dynamic Adaptive System for Hierarchical Multipole Methods
    DeBuhr, J.
    Zhang, B.
    Sterling, T.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (01) : 296 - 314
  • [2] ADAPTIVE ISOGEOMETRIC METHODS WITH HIERARCHICAL SPLINES: AN OVERVIEW
    Bracco, Cesare
    Buffa, Annalisa
    Giannelli, Carlotta
    Vazquez, Rafael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (01) : 241 - 261
  • [3] Boundary element methods for the wave equation based on hierarchical matrices and adaptive cross approximation
    Seibel, Daniel
    NUMERISCHE MATHEMATIK, 2022, 150 (02) : 629 - 670
  • [4] A pedestrian introduction to fast multipole methods
    YING Lexing Department of Mathematics and ICES
    Science China(Mathematics), 2012, 55 (05) : 1043 - 1051
  • [5] A pedestrian introduction to fast multipole methods
    Lexing Ying
    Science China Mathematics, 2012, 55 : 1043 - 1051
  • [6] A pedestrian introduction to fast multipole methods
    Ying Lexing
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (05) : 1043 - 1051
  • [7] Fast multipole methods for particle dynamics
    Kurzak, J.
    Pettitt, B. M.
    MOLECULAR SIMULATION, 2006, 32 (10-11) : 775 - 790
  • [8] Adaptive spatial decomposition in fast multipole method
    Zhang, J. M.
    Tanaka, Masa.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 17 - 28
  • [9] A fast adaptive multipole algorithm in three dimensions
    Cheng, H
    Greengard, L
    Rokhlin, V
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) : 468 - 498
  • [10] Comparison of the Fast Multipole Method with Hierarchical Matrices for the Helmholtz-BEM
    Brunner, D.
    Junge, M.
    Rapp, P.
    Bebendorf, M.
    Gaul, L.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 131 - 159