Machine learning defect properties in Cd-based chalcogenides

被引:0
作者
Mannodi-Kanakkithodi, Arun [1 ]
Toriyama, Michael [1 ]
Sen, Fatih G. [1 ]
Davis, Michael J. [2 ]
Klie, Robert F. [3 ]
Chan, Maria K. Y. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
来源
2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2019年
关键词
density functional theory; machine learning; CdTe; chalcogenides; point defects;
D O I
10.1109/pvsc40753.2019.8981266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Impurity energy levels in the band gap can have serious consequences for a semiconductor's performance as a photovoltaic absorber. Data-driven approaches can help accelerate the prediction of point defect properties in common semiconductors, and thus lead to the identification of potential deep lying impurity states. In this work, we use density functional theory (DFT) to compute defect formation energies and charge transition levels of hundreds of impurities in CdX chalcogenide compounds, where X = Te, Se or S. We apply machine learning techniques on the DFT data and develop on-demand predictive models for the formation energy and relevant transition levels of any impurity atom in any site. The trained ML models are general and accurate enough to predict the properties of any possible point defects in any Cd-based chalcogenide, as we prove by testing on a few selected defects in mixed chalcogen compounds CdTe0.5Se0.5 and CdSe0.5S0.5. The ML framework used in this work can be extended to any class of semiconductors.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 9 条
[1]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[2]   First-principles calculations for point defects in solids [J].
Freysoldt, Christoph ;
Grabowski, Blazej ;
Hickel, Tilmann ;
Neugebauer, Joerg ;
Kresse, Georg ;
Janotti, Anderson ;
Van de Walle, Chris G. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :253-305
[3]   Fully Ab Initio Finite-Size Corrections for Charged-Defect Supercell Calculations [J].
Freysoldt, Christoph ;
Neugebauer, Joerg ;
Van de Walle, Chris G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (01)
[4]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[5]  
Luque A, 2012, NAT PHOTONICS, V6, P146, DOI [10.1038/NPHOTON.2012.1, 10.1038/nphoton.2012.1]
[6]  
Mannodi-Kanakkithodi A., 2018, MATER TODAY, P1369
[7]   Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide [J].
Mannodi-Kanakkithodi, Arun ;
Park, Ji-Sang ;
Jeon, Nari ;
Cao, Duyen H. ;
Gosztola, David J. ;
Martinson, Alex B. F. ;
Chan, Maria K. Y. .
CHEMISTRY OF MATERIALS, 2019, 31 (10) :3599-3612
[8]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[9]   Transition metal-substituted lead halide perovskite absorbers [J].
Sampson, M. D. ;
Park, J. S. ;
Schaller, R. D. ;
Chan, M. K. Y. ;
Martinson, A. B. F. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) :3578-3588