Kernelized fuzzy attribute C-means clustering algorithm

被引:63
作者
Liu, Jingwei [1 ]
Xu, Meizhi [2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, LMIB & Dept Math, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国博士后科学基金;
关键词
fuzzy clustering; fuzzy C-means; attribute means clustering; kernelized fuzzy C-means;
D O I
10.1016/j.fss.2008.03.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent m = 2, and fuzzy attribute C-means clustering is a general type of attribute means clustering with weighting exponent m > 1, we modify the distance in fuzzy attribute C-means clustering algorithm with kernel-induced distance, and obtain kernelized fuzzy attribute C-means clustering algorithm. Kernelized fuzzy attribute C-means clustering algorithm is a natural generalization of kernelized fuzzy C-means algorithm with stable function. Experimental results on standard It-is database and tumor/normal gene chip expression data demonstrate that kernelized fuzzy attribute C-means clustering algorithm with Gaussian radial basis kernel function and Cauchy stable function is more effective and robust than fuzzy C-means, fuzzy attribute C-means clustering and kernelized fuzzy C-means as well. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2428 / 2445
页数:18
相关论文
共 20 条
[1]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[2]   Parallel genetic simulated annealing: A massively parallel SIMD algorithm [J].
Chen, H ;
Flann, NS ;
Watson, DW .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1998, 9 (02) :126-136
[3]  
CHENG QS, 1993, MATH PRINCIPLE DIGIT
[4]   A new kernel-based fuzzy clustering approach: Support vector clustering with cell growing [J].
Chiang, JH ;
Hao, PY .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (04) :518-527
[5]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[6]   Mercer kernel-based clustering in feature space [J].
Girolami, M .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (03) :780-784
[7]   A kernel-based subtractive clustering method [J].
Kim, DW ;
Lee, K ;
Lee, D ;
Lee, KH .
PATTERN RECOGNITION LETTERS, 2005, 26 (07) :879-891
[8]  
Li Zhang, 2002, Chinese Journal of Computers, V25, P587
[9]  
Liu Jingwei, 2007, Journal of Beijing University of Aeronautics and Astronautics, V33, P1121
[10]  
Liu Jingwei, 2002, Acta Scientiarum Naturalium Universitatis Pekinensis, V38, P611