Nanoscopic Electrolyte-Gated Vertical Organic Transistors with Low Operation Voltage and Five Orders of Magnitude Switching Range for Neuromorphic Systems

被引:44
作者
Eckel, Christian [1 ,2 ]
Lenz, Jakob [1 ]
Melianas, Armantas [3 ]
Salleo, Alberto [3 ]
Weitz, R. Thomas [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, AG Phys Nanosyst, Fac Phys, D-80539 Munich, Germany
[2] Georg August Univ, Inst Phys 1, Fac Phys, D-37073 Gottingen, Germany
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
关键词
electrolyte-gated; organic transistor; vertical structure; synaptic plasticity; conductance switching; two times synaptic plasticity; SYNAPTIC PLASTICITY; HIGH-PERFORMANCE;
D O I
10.1021/acs.nanolett.1c03832
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolyte-gated organic transistors (EGOTs) are promising candidates as a new class of neuromorphic devices in hardware-based artificial neural networks that can outperform their complementary metal oxide semiconductor (CMOS) counterparts regarding processing speed and energy consumption. Several ways in which to implement such networks exist, two prominent methods of which can be implemented by nanoscopic vertical EGOTs, as we show here. First, nanoscopic vertical electrolyte-gated transistors with a donor-acceptor diketopyrrolopyrrole-terthiophene polymer as an active material can be used to reversibly switch the channel conductivity over five orders of magnitude (3.8 nS to 392 mu S) and perform switching at low operation voltages down to -1 mV. Second, nanoscopic EGOTs can also mimic fundamental synaptic functions, and we show an interconnection of up to three transistors, highlighting the possibility to emulate biological nerve cells.
引用
收藏
页码:973 / 978
页数:6
相关论文
共 37 条
[1]  
Agarwal S, 2016, IEEE IJCNN, P929, DOI 10.1109/IJCNN.2016.7727298
[2]  
[Anonymous], 1997, Elements of artificial neural networks
[3]   Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics [J].
Bijleveld, Johan C. ;
Zoombelt, Arjan P. ;
Mathijssen, Simon G. J. ;
Wienk, Martijn M. ;
Turbiez, Mathieu ;
de Leeuw, Dago M. ;
Janssen, Rene A. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (46) :16616-+
[4]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[5]   Vertical organic synapse expandable to 3D crossbar array [J].
Choi, Yongsuk ;
Oh, Seyong ;
Qian, Chuan ;
Park, Jin-Hong ;
Cho, Jeong Ho .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Current versus gate voltage hysteresis in organic field effect transistors [J].
Egginger, Martin ;
Bauer, Siegfried ;
Schwoediauer, Reinhard ;
Neugebauer, Helmut ;
Sariciftci, Niyazi Serdar .
MONATSHEFTE FUR CHEMIE, 2009, 140 (07) :735-750
[7]   Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing [J].
Fuller, Elliot J. ;
Keene, Scott T. ;
Melianas, Armantas ;
Wang, Zhongrui ;
Agarwal, Sapan ;
Li, Yiyang ;
Tuchman, Yaakov ;
James, Conrad D. ;
Marinella, Matthew J. ;
Yang, J. Joshua ;
Salleo, Alberto ;
Talin, A. Alec .
SCIENCE, 2019, 364 (6440) :570-+
[8]   Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors [J].
Gkoupidenis, Paschalis ;
Schaefer, Nathan ;
Garlan, Benjamin ;
Malliaras, George G. .
ADVANCED MATERIALS, 2015, 27 (44) :7176-+
[9]   Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations [J].
Gokmen, Tayfun ;
Vlasov, Yurii .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[10]   Electric-double-layer transistors for synaptic devices and neuromorphic systems [J].
He, Yongli ;
Yang, Yi ;
Nie, Sha ;
Liu, Rui ;
Wan, Qing .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (20) :5336-5352