ASYMPTOTIC BEHAVIOR OF THE NONLINEAR VLASOV EQUATION WITH A SELF-CONSISTENT FORCE

被引:6
作者
Choi, Sun-Ho [1 ]
Ha, Seung-Yeal [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
asymptotic completeness; self-consistent Vlasov equation; phase transition; long-ranged force; short-ranged force; scattering; DEFINED SCATTERING OPERATORS; KLEIN-GORDON EQUATIONS; POISSON SYSTEM; GLOBAL EXISTENCE; DIMENSIONS; INITIAL DATA; SPACE; PARTICLES;
D O I
10.1137/100815098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a critical threshold phenomenon on the L-1-asymptotic completeness for the nonlinear Vlasov equation with a self-consistent force. For a long-ranged self-consistent force, we show that the nonlinear Vlasov equation has no L-1-asymptotic completeness, which means that the nonlinear Vlasov flow cannot be approximated by the corresponding free flow in L-1-norm time-asymptotically. In contrast, for a short-ranged force, the nonlinear Vlasov flow can be approximated by the free flow time-asymptotically. Our result corresponds to the kinetic analogue of scattering results to the Schrodinger-type equations in quantum mechanics.
引用
收藏
页码:2050 / 2077
页数:28
相关论文
共 50 条
[21]   A 3D self-consistent chemotaxis-fluid system with nonlinear diffusion [J].
Wang, Yulan ;
Zhao, Li .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) :148-179
[22]   The nonlinear wave in semiconductor quantum plasma for laser beam in a self-consistent plasma channel [J].
Rani, Neelam ;
Yadav, Manikant ;
Mathur, Y. K. .
PHYSICS LETTERS A, 2020, 384 (09)
[23]   On the Asymptotic Behavior of Solutions to the Vlasov-Poisson System [J].
Ionescu, Alexandru D. ;
Pausader, Benoit ;
Wang, Xuecheng ;
Widmayer, Klaus .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) :8865-8889
[24]   Global Existence and Asymptotic Behavior of Solutions for Some Nonlinear Hyperbolic Equation [J].
Yaojun Ye .
Journal of Inequalities and Applications, 2010
[25]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF THE DIRICHLET PROBLEM FOR A NONLINEAR PSEUDOPARABOLIC EQUATION [J].
Le Thi Phuong Ngoc ;
Dao Thi Hai Yen ;
Nguyen Thanh Long .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
[26]   SCATTERING AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE VLASOV-POISSON SYSTEM IN HIGH DIMENSION [J].
Pankavich, Stephen .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) :4727-4750
[27]   Integrating the Korteweg-de Vries equation with a self-consistent source and "steplike" initial data [J].
Urasboev, GU ;
Khasanov, AB .
THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (01) :1341-1356
[28]   Self-consistent description of graphene quantum amplifier [J].
Lozovik, Yu. E. ;
Nechepurenko, I. A. ;
Andrianov, E. S. ;
Dorofeenko, A. V. ;
Pukhov, A. A. ;
Chtchelkatchev, N. M. .
PHYSICAL REVIEW B, 2016, 94 (03)
[29]   ON THE INTEGRABILITY OF KDV HIERARCHY WITH SELF-CONSISTENT SOURCES [J].
Gerdjikov, Vladimir S. ;
Grahovski, Georgi G. ;
Ivanov, Rossen I. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (04) :1439-1452
[30]   LARGE TIME ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO HIGHER ORDER NONLINEAR SCHRODINGER EQUATION [J].
Juarez-Campos, Beatriz ;
Naumkin, Pavel, I ;
Ruiz-Paredes, Hector F. .
OSAKA JOURNAL OF MATHEMATICS, 2021, 58 (03) :509-529