The complete asymptotic expansion for Bernstein operators

被引:26
作者
Tachev, Gancho T. [1 ]
机构
[1] Univ Architecture, Dept Math, BG-1046 Sofia, Bulgaria
关键词
Bernstein operator; Positive linear operators; Moduli of continuity (smoothness); Degree of approximation; APPROXIMATION;
D O I
10.1016/j.jmaa.2011.07.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the asymptotic behavior of the classical Bernstein operators, applied to q-times continuously differentiable functions. Our main results extend the results of S.N. Bernstein and R.G. Mamedov for all q-odd natural numbers and thus generalize the theorem of E.V. Voronovskaja. The exact degree of approximation is also proved. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1179 / 1183
页数:5
相关论文
共 13 条
[1]  
BERNSTEIN S., 1932, Compt. Rend. l'acad. sci. URSS, V4, P86
[2]  
DeVore R. A., 1993, Constructive Approximation
[3]  
Ditzian Z., 1987, Springer Series in Computational Mathematics
[4]  
Gonska H., 2008, P 5 INT S MATH IN SI, P76
[5]  
Gonska H., 2006, P INT C NUM AN APPR, P55
[6]  
Gonska H., 2008, GEN MATH, V16, P87
[7]  
Gonska H, 2007, STUD U BABES-BOL MAT, V52, P103
[8]  
Knoop H.-B., 1994, Results Math., V25, P315
[9]  
MAMEDOV RG, 1962, DOKL AKAD NAUK SSSR+, V146, P1013
[10]  
SEMENOV EM, 1977, MATH USSR IZV, V11, P1229