Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior

被引:79
作者
Tan, Jeannie Z. Y. [1 ]
Fernandez, Yolanda [2 ,3 ]
Liu, Dong [2 ]
Maroto-Valer, Mercedes [2 ]
Bian, Juncao [1 ]
Zhang, Xiwen [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Nottingham, CICCS, Fac Engn, Nottingham NG7 2RD, England
[3] CSIC, Inst Nacl Carbon, E-33080 Oviedo, Spain
关键词
PHOTOCATALYTIC CONVERSION; TITANIA; DECOMPOSITION; EXPLOITATION; REDUCTION; RESONANCE; DIOXIDE; DESIGN; RUTILE; FUELS;
D O I
10.1016/j.cplett.2012.02.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This Letter shows the activity of a novel metal/semiconductor photocatalyst for reducing CO2 to CH4 in the presence of H2O under UV-light irradiation. This composite is prepared on a transparent conductive substrate by an hydrothermal method for depositing TiO2 nanorod films, and then loaded with Cu nanoparticles (NPs) by an electrochemical method. The plasmonic properties of Cu NPs greatly enhance the resulting photoactivity with respect to that of pure TiO2 nanorod films. The final CH4 production rate observed (similar to 2.91 ppm/g(catal). h) represents an improvement compared to specific values reported by other authors using conventional titania-based catalysts. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 41 条
[1]   The relationship between the local structure of copper(I) ions on Cu+/zeolite catalysts and their photocatalytic reactivities for the decomposition of NOx into N2 and O2 at 275 K [J].
Anpo, M ;
Matsuoka, M ;
Hanou, K ;
Mishima, H ;
Yamashita, H ;
Patterson, HH .
COORDINATION CHEMISTRY REVIEWS, 1998, 171 :175-184
[2]   The contribution of the utilization option to reducing the CO2 atmospheric loading:: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use [J].
Aresta, M ;
Dibenedetto, A .
CATALYSIS TODAY, 2004, 98 (04) :455-462
[3]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[4]   Sensing capability of the localized surface plasmon resonance of gold nanorods [J].
Chen, Cheng-Dah ;
Cheng, Shu-Fang ;
Chau, Lai-Kwan ;
Wang, C. R. Chris .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (06) :926-932
[5]   Titania nanotubes, nanorods and nanopowder in the carbon monoxide oxidation process [J].
Grigorieva, Anastasia V. ;
Goodilin, Eugene A. ;
Dubova, Ksenia L. ;
Anufrieva, Tatyana A. ;
Derlyukova, Lyudmila E. ;
Vyacheslavov, Alexander S. ;
Tretyakov, Yuri D. .
SOLID STATE SCIENCES, 2010, 12 (06) :1024-1028
[6]   Plasmons in Strongly Coupled Metallic Nanostructures [J].
Halas, Naomi J. ;
Lal, Surbhi ;
Chang, Wei-Shun ;
Link, Stephan ;
Nordlander, Peter .
CHEMICAL REVIEWS, 2011, 111 (06) :3913-3961
[7]   Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light [J].
Hou, Wenbo ;
Liu, Zuwei ;
Pavaskar, Prathamesh ;
Hung, Wei Hsuan ;
Cronin, Stephen B. .
JOURNAL OF CATALYSIS, 2011, 277 (02) :149-153
[8]   Photocatalytic degradation of spill oils on TiO2 nanotube thin films [J].
Hsu, Ying-Ya ;
Hsiung, Tung-Li ;
Wang, H. Paul ;
Fukushima, Yasuhiro ;
Wei, Yu-Ling ;
Chang, Juu-En .
MARINE POLLUTION BULLETIN, 2008, 57 (6-12) :873-876
[9]   Exploitation of localized surface plasmon resonance [J].
Hutter, E ;
Fendler, JH .
ADVANCED MATERIALS, 2004, 16 (19) :1685-1706
[10]   Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts [J].
Ingram, David B. ;
Christopher, Phillip ;
Bauer, Jonathan L. ;
Linic, Suljo .
ACS CATALYSIS, 2011, 1 (10) :1441-1447