ARITHMETIC PROPERTIES FOR 7-REGULAR PARTITION TRIPLES

被引:2
|
作者
Chern, Shane [1 ]
Tang, Dazhao [2 ]
Xia, Ernest X. W. [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Chongqing Univ, Coll Math & Stat, Huxi Campus LD206, Chongqing 401331, Peoples R China
[3] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Partitions; arithmetic properties; l-regular partition triples; L-REGULAR PARTITIONS; RAMANUJAN-TYPE CONGRUENCES; MODULO POWERS; PROOF;
D O I
10.1007/s13226-020-0426-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T-l(n) denote the number of l-regular partition triples of n. In this paper, we consider the arithmetic properties of T-7(n). An infinite family of congruences modulo powers of 7 and several congruences modulo 7 are established. For instance, we prove that for all n >= 0 and alpha >= 1, T-7 (7(2 alpha)n + 3 x 7(2 alpha) - 3/4) equivalent to 0 (mod 7(alpha)).
引用
收藏
页码:717 / 733
页数:17
相关论文
共 50 条