ARITHMETIC PROPERTIES FOR 7-REGULAR PARTITION TRIPLES

被引:2
|
作者
Chern, Shane [1 ]
Tang, Dazhao [2 ]
Xia, Ernest X. W. [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Chongqing Univ, Coll Math & Stat, Huxi Campus LD206, Chongqing 401331, Peoples R China
[3] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Partitions; arithmetic properties; l-regular partition triples; L-REGULAR PARTITIONS; RAMANUJAN-TYPE CONGRUENCES; MODULO POWERS; PROOF;
D O I
10.1007/s13226-020-0426-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T-l(n) denote the number of l-regular partition triples of n. In this paper, we consider the arithmetic properties of T-7(n). An infinite family of congruences modulo powers of 7 and several congruences modulo 7 are established. For instance, we prove that for all n >= 0 and alpha >= 1, T-7 (7(2 alpha)n + 3 x 7(2 alpha) - 3/4) equivalent to 0 (mod 7(alpha)).
引用
收藏
页码:717 / 733
页数:17
相关论文
共 50 条
  • [31] The partition function modulo 3 in arithmetic progressions
    Smith, Geoffrey D.
    Ye, Lynnelle
    RAMANUJAN JOURNAL, 2016, 39 (03) : 603 - 608
  • [32] Parity of sums of partition numbers and squares in arithmetic progressions
    Cristina Ballantine
    Mircea Merca
    The Ramanujan Journal, 2017, 44 : 617 - 630
  • [33] Parity of sums of partition numbers and squares in arithmetic progressions
    Ballantine, Cristina
    Merca, Mircea
    RAMANUJAN JOURNAL, 2017, 44 (03) : 617 - 630
  • [34] Congruences for ℓ-regular partition functions modulo 3
    David Furcy
    David Penniston
    The Ramanujan Journal, 2012, 27 : 101 - 108
  • [35] Regular, unit-regular, and idempotent elements of semigroups of transformations that preserve a partition
    Sarkar, Mosarof
    Singh, Shubh N.
    SEMIGROUP FORUM, 2022, 104 (01) : 148 - 165
  • [36] Regular, unit-regular, and idempotent elements of semigroups of transformations that preserve a partition
    Mosarof Sarkar
    Shubh N. Singh
    Semigroup Forum, 2022, 104 : 148 - 165
  • [37] Congruences for 7 and 49-regular partitions modulo powers of 7
    Adiga, Chandrashekar
    Dasappa, Ranganatha
    RAMANUJAN JOURNAL, 2018, 46 (03) : 821 - 833
  • [38] Shifted Distinct-part Partition Identities in Arithmetic Progressions
    Alwaise, Ethan
    Dicks, Robert
    Friedman, Jason
    Gu, Lianyan
    Harner, Zach
    Larson, Hannah
    Locus, Madeline
    Wagner, Ian
    Weinstock, Josh
    ANNALS OF COMBINATORICS, 2017, 21 (04) : 479 - 494
  • [39] Shifted Distinct-part Partition Identities in Arithmetic Progressions
    Ethan Alwaise
    Robert Dicks
    Jason Friedman
    Lianyan Gu
    Zach Harner
    Hannah Larson
    Madeline Locus
    Ian Wagner
    Josh Weinstock
    Annals of Combinatorics, 2017, 21 : 479 - 494
  • [40] l-Adic properties of the partition function
    Folsom, Amanda
    Kent, Zachary A.
    Ono, Ken
    ADVANCES IN MATHEMATICS, 2012, 229 (03) : 1586 - 1609