WHEN THE SIEVE WORKS

被引:11
作者
Granville, Andrew [1 ]
Koukoulopoulos, Dimitris [1 ]
Matomaki, Kaisa [2 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Turku, Dept Math & Stat, Turku, Finland
基金
加拿大自然科学与工程研究理事会; 芬兰科学院;
关键词
INTEGERS; NUMBER;
D O I
10.1215/00127094-3120891
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in classifying those sets of primes P such that when we sieve out the integers up to x by the primes in P-c we are left with roughly the expected number of unsieved integers. In particular, we obtain the first general results for sieving an interval of length x with primes including some in (root x, x], using methods motivated by additive combinatorics.
引用
收藏
页码:1935 / 1969
页数:35
相关论文
共 13 条
[1]  
[Anonymous], PREPRINT
[2]  
BLEICHENBACHER D., 1939, CONTINUOUS POS UNPUB
[3]  
Friedlander J., 2010, OPERA CRIBRO
[4]  
FRIEDLANDER JB, 1976, P LOND MATH SOC, V33, P565
[5]   The number of unsieved integers up to x [J].
Granville, A ;
Soundararajan, K .
ACTA ARITHMETICA, 2004, 115 (04) :305-328
[6]  
HALL RR, 1974, ACTA ARITH, V25, P347
[7]   ON THE NUMBER OF POSITIVE INTEGERS GREATER-THAN-OR-EQUAL-TO X AND FREE OF PRIME FACTORS GREATER-THAN Y [J].
HILDEBRAND, A .
JOURNAL OF NUMBER THEORY, 1986, 22 (03) :289-307
[8]   QUANTITATIVE MEAN-VALUE THEOREMS FOR NONNEGATIVE MULTIPLICATIVE FUNCTIONS-II [J].
HILDEBRAND, A .
ACTA ARITHMETICA, 1987, 48 (03) :209-260
[9]  
IWANIEC H., 2004, AM MATH SOC C PUB, V53
[10]  
LENSTRA JR H. W., 2005, PREPRINT