Viral MicroRNA Targetome of KSHV-Infected Primary Effusion Lymphoma Cell Lines

被引:257
|
作者
Gottwein, Eva [1 ]
Corcoran, David L. [2 ]
Mukherjee, Neelanjan [2 ]
Skalsky, Rebecca L. [4 ]
Hafner, Markus [5 ,6 ]
Nusbaum, Jeffrey D. [5 ,6 ]
Shamulailatpam, Priscilla [1 ]
Love, Cassandra L. [2 ]
Dave, Sandeep S. [2 ]
Tuschl, Thomas [5 ,6 ]
Ohler, Uwe [2 ,3 ]
Cullen, Bryan R. [4 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Microbiol Immunol, Chicago, IL 60611 USA
[2] Duke Univ, Duke Inst Genome Sci & Policy, Durham, NC 27708 USA
[3] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27708 USA
[4] Duke Univ, Dept Mol Genet & Microbiol, Durham, NC 27710 USA
[5] Rockefeller Univ, Howard Hughes Med Inst, New York, NY 10065 USA
[6] Rockefeller Univ, Lab RNA Mol Biol, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
SARCOMA-ASSOCIATED HERPESVIRUS; VIRUS-ENCODED MICRORNAS; HUMAN GAMMA-HERPESVIRUSES; EPSTEIN-BARR-VIRUS; PROTEIN EXPRESSION; MESSENGER-RNAS; DNA-SEQUENCES; PAR-CLIP; IDENTIFICATION; MIR-155;
D O I
10.1016/j.chom.2011.09.012
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Primary effusion lymphoma (PEL) is caused by Kaposi's sarcoma-associated herpesvirus (KSHV) and frequently also harbors Epstein-Barr virus (EBV). The expression of KSHV- and EBV-encoded microRNAs (miRNAs) in PELs suggests a role for these miRNAs in latency and lymphomagenesis. Using PAR-CLIP, a technology which allows the direct and transcriptome-wide identification of miRNA targets, we delineate the target sites for all viral and cellular miRNAs expressed in PEL cell lines. The resulting data set revealed that KSHV miRNAs directly target more than 2000 cellular mRNAs, including many involved in pathways relevant to KSHV pathogenesis. Moreover, 58% of these mRNAs are also targeted by EBV miRNAs, via distinct binding sites. In addition to a known viral analog of cellular miR-155, we show that KSHV encodes a viral miRNA that mimics cellular miR-142-3p function. In summary, this study identifies an extensive list of KSHV miRNA targets, which are likely to influence viral replication and pathogenesis.
引用
收藏
页码:515 / 526
页数:12
相关论文
共 50 条
  • [1] The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines
    Skalsky, Rebecca L.
    Corcoran, David L.
    Gottwein, Eva
    Frank, Christopher L.
    Kang, Dong
    Hafner, Markus
    Nusbaum, Jeffrey D.
    Feederle, Regina
    Delecluse, Henri-Jacques
    Luftig, Micah A.
    Tuschl, Thomas
    Ohler, Uwe
    Cullen, Bryan R.
    PLOS PATHOGENS, 2012, 8 (01)
  • [2] KSHV-infected PEL cell lines exhibit a distinct gene expression profile
    Ueda, Keiji
    Ito, Emi
    Karayama, Masato
    Ohsaki, Eriko
    Nakano, Kazushi
    Watanabe, Shinya
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 394 (03) : 482 - 487
  • [3] Global epigenomic analysis of KSHV-infected primary effusion lymphoma identifies functional MYC superenhancers and enhancer RNAs
    Park, Angela
    Oh, Soohwan
    Jung, Kyle L.
    Choi, Un Yung
    Lee, Hye-Ra
    Rosenfeld, Michael G.
    Jung, Jae U.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (35) : 21618 - 21627
  • [4] Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected Lymphoma Cells
    Quan, Liangliang
    Qiu, Tao
    Liang, Jiulong
    Li, Miao
    Zhang, Yu
    Tao, Kai
    PATHOLOGY & ONCOLOGY RESEARCH, 2015, 21 (04) : 875 - 880
  • [5] Repurposing alcohol-abuse drug disulfiram for the treatment of KSHV-infected primary effusion lymphoma by activating antiviral innate immunity
    Wang, Lijie
    Liu, Zhenshan
    Xu, Zeyu
    Wang, Wenjing
    Yang, Jinhong
    Zhang, Junjie
    He, Shanping
    Liang, Qiming
    Li, Tingting
    PLOS PATHOGENS, 2025, 21 (03)
  • [6] Sphingosine Kinase-2 Maintains Viral Latency and Survival for KSHV-Infected Endothelial Cells
    Dai, Lu
    Plaisance-Bonstaff, Karlie
    Voelkel-Johnson, Christina
    Smith, Charles D.
    Ogretmen, Besim
    Qin, Zhiqiang
    Parsons, Chris
    PLOS ONE, 2014, 9 (07):
  • [7] Oncolytic Reactivation of KSHV as a Therapeutic Approach for Primary Effusion Lymphoma
    Zhou, Feng
    Shimoda, Michiko
    Olney, Laura
    Lyu, Yuanzhi
    Khiem Tran
    Jiang, Guochun
    Nakano, Kazushi
    Davis, Ryan R.
    Tepper, Clifford G.
    Maverakis, Emanual
    Campbell, Mel
    Li, Yuanpei
    Dandekar, Satya
    Izumiya, Yoshihiro
    MOLECULAR CANCER THERAPEUTICS, 2017, 16 (11) : 2627 - 2638
  • [8] Tumor suppressor genes FHIT and WWOX are deleted in primary effusion lymphoma (PEL) cell lines
    Roy, Debasmita
    Sin, Sang-Hoon
    Damania, Blossom
    Dittmer, Dirk P.
    BLOOD, 2011, 118 (07) : E32 - E39
  • [9] Viral, immunologic, and clinical features of primary effusion lymphoma
    Lurain, Kathryn
    Polizzotto, Mark N.
    Aleman, Karen
    Bhutani, Manisha
    Wyvill, Kathleen M.
    Goncalves, Priscila H.
    Ramaswami, Ramya
    Marshall, Vickie Ann
    Miley, Wendell
    Steinberg, Seth M.
    Little, Richard F.
    Wilson, Wyndham
    Filie, Armando C.
    Pittaluga, Stefania
    Jaffe, Elaine S.
    Whitby, Denise
    Yarchoan, Robert
    Uldrick, Thomas S.
    BLOOD, 2019, 133 (16) : 1753 - 1761
  • [10] Inhibition of KSHV infected primary effusion lymphomas in NOD/SCID mice by γ-secretase inhibitor
    Lan, Ke
    Murakami, Masanao
    Bajaj, Bharat
    Kaul, Rajeev
    He, Zhiheng
    Gan, Runliang
    Feldman, Michael
    Robertson, Erle S.
    CANCER BIOLOGY & THERAPY, 2009, 8 (22) : 2136 - 2143