Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel

被引:24
作者
Abbas, Mohamed I. [1 ]
Ragusa, Maria Alessandra [2 ,3 ]
机构
[1] Alexandria Univ, Fac Sci, Dept Math & Comp Sci, Alexandria 21511, Egypt
[2] Univ Catania, Dipartimento Matemat & Informat, Catania, Italy
[3] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 11期
关键词
Atangana-Baleanu fractional derivatives; measure of non-compactness; Mo?nch fixed point theorem; BOUNDARY-VALUE-PROBLEMS; NONCOMPACTNESS; DERIVATIVES; SPACE;
D O I
10.3934/math.20221113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the existing article, the existence of solutions to nonlinear fractional differential inclusions in the sense of the Atangana-Baleanu-Caputo (ABC) fractional derivatives in Banach space is studied. The investigation of the main results relies on the set-valued issue of Mo center dot nch fixed point theorem incorporated with the Kuratowski measure of non-compactness. A simulated example is proposed to explain the obtained results.
引用
收藏
页码:20328 / 20340
页数:13
相关论文
共 50 条
  • [31] Electromagnetic waves in conducting media described by a fractional derivative with non-singular kernel
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Cordova-Fraga, T.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (11) : 1493 - 1503
  • [32] Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions
    Fernandez, Arran
    Baleanu, Dumitru
    Srivastava, H. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 517 - 527
  • [33] Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws
    Solis-Perez, J. E.
    Gomez-Aguilar, J. F.
    Atangana, A.
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 175 - 185
  • [34] On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory
    Avalos-Ruiz, L. F.
    Gomez-Aguilar, J. F.
    Atangana, A.
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 364 - 388
  • [35] Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels
    Mohammed, Pshtiwan Othman
    Hamasalh, Faraidun Kadir
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [36] New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
    Gomez-Aguilar, J. F.
    Atangana, Abdon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [37] A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators
    Fernandez, Arran
    Kurt, Cemaliye
    Ozarslan, Mehmet Ali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)
  • [38] Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels
    Fernandez, Arran
    Mohammed, Pshtiwan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8414 - 8431
  • [39] Analysis of a physically-relevant variable-order time-fractional reaction-diffusion model with Mittag-Leffler kernel
    Zheng, Xiangcheng
    Wang, Hong
    Fu, Hongfei
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [40] Unconditionally stable finite element method for the variable-order fractional Schro<spacing diaeresis>dinger equation with Mittag-Leffler kernel
    Karamali, Gholamreza
    Mohammadi-Firouzjaei, Hadi
    JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (03): : 533 - 550