Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel

被引:24
|
作者
Abbas, Mohamed I. [1 ]
Ragusa, Maria Alessandra [2 ,3 ]
机构
[1] Alexandria Univ, Fac Sci, Dept Math & Comp Sci, Alexandria 21511, Egypt
[2] Univ Catania, Dipartimento Matemat & Informat, Catania, Italy
[3] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 11期
关键词
Atangana-Baleanu fractional derivatives; measure of non-compactness; Mo?nch fixed point theorem; BOUNDARY-VALUE-PROBLEMS; NONCOMPACTNESS; DERIVATIVES; SPACE;
D O I
10.3934/math.20221113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the existing article, the existence of solutions to nonlinear fractional differential inclusions in the sense of the Atangana-Baleanu-Caputo (ABC) fractional derivatives in Banach space is studied. The investigation of the main results relies on the set-valued issue of Mo center dot nch fixed point theorem incorporated with the Kuratowski measure of non-compactness. A simulated example is proposed to explain the obtained results.
引用
收藏
页码:20328 / 20340
页数:13
相关论文
共 50 条
  • [1] Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel
    Bahaa, G. M.
    Hamiaz, Adnane
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel
    Baleanu, D.
    Shiri, B.
    Srivastava, H. M.
    Al Qurashi, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [3] Blood vessel detection based on fractional Hessian matrix with non-singular Mittag-Leffler Gaussian kernel
    Solis-Perez, J. E.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Reyes-Reyes, J.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 54
  • [4] On a New Definition of Fractional Differintegrals with Mittag-Leffler Kernel
    Fernandez, Arran
    Baleanu, Dumitru
    FILOMAT, 2019, 33 (01) : 245 - 254
  • [5] Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel
    Afshari, Hojjat
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [6] A basic study of a fractional integral operator with extended Mittag-Leffler kernel
    Rahman, Gauhar
    Suwan, Iyad
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Samraiz, Muhammad
    Ali, Asad
    AIMS MATHEMATICS, 2021, 6 (11): : 12757 - 12770
  • [7] Mittag-Leffler stability of fractional order nonlinear dynamic systems
    Li, Yan
    Chen, YangQuan
    Podlubny, Igor
    AUTOMATICA, 2009, 45 (08) : 1965 - 1969
  • [8] Fractional wave equation with a frictional memory kernel of Mittag-Leffler type
    Tomovski, Zivorad
    Sandev, Trifce
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) : 10022 - 10031
  • [9] Results on Implicit Fractional Pantograph Equations with Mittag-Leffler Kernel and Nonlocal Condition
    Almalahi, Mohammed A.
    Panchal, Satish K.
    Jarad, Fahd
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] MITTAG-LEFFLER INPUT STABILITY OF FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS
    Sene, Ndolane
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 867 - 880