On the dispersion of sparse grids

被引:14
|
作者
Krieg, David [1 ]
机构
[1] Univ Jena, Math Inst, Ernst Abbe Pl 2, D-07740 Jena, Germany
关键词
Dispersion; Largest empty box; Sparse grid; High dimensional problems;
D O I
10.1016/j.jco.2017.11.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any d N and epsilon is an element of (0, 1), we present a point set in the d-dimensional unit cube [0, 1](d) that intersects every axis-aligned box of volume greater than epsilon. This point set is very easy to handle and in a vast range for epsilon and d, we do not know any smaller set with this property. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 50 条
  • [31] Principal manifold learning by sparse grids
    Christian Feuersänger
    Michael Griebel
    Computing, 2009, 85 : 267 - 299
  • [32] A MULTIGRID METHOD FOR ADAPTIVE SPARSE GRIDS
    Peherstorfer, Benjamin
    Zimmer, Stefan
    Zenger, Christoph
    Bungartz, Hans-Joachim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : S51 - S70
  • [33] TIME DISPERSION IN PHOTOMULTIPLIERS WITH ACCELERATING GRIDS
    KOSTIN, AB
    RADIOTEKHNIKA I ELEKTRONIKA, 1982, 27 (04): : 820 - 823
  • [34] Multivariate quadrature rules on crosslet sparse grids
    Gao, Qinjiao
    Sun, Xingping
    Zhang, Shenggang
    NUMERICAL ALGORITHMS, 2022, 90 (03) : 951 - 962
  • [35] Sobol indices for dimension adaptivity in sparse grids
    Dwight, Richard P. (r.p.dwight@tudelft.nl), 1600, Springer Science and Business Media, LLC (153):
  • [36] Sobol Indices for Dimension Adaptivity in Sparse Grids
    Dwight, Richard P.
    Desmedt, Stijn G. L.
    Omrani, Pejman Shoeibi
    SIMULATION-DRIVEN MODELING AND OPTIMIZATION, 2016, 153 : 371 - 395
  • [37] fastsg: A Fast Routines Library for Sparse Grids
    Murarasu, Alin
    Buse, Gerrit
    Pflueger, Dirk
    Weidendorfer, Josef
    Bode, Arndt
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 354 - 363
  • [38] High dimensional polynomial interpolation on sparse grids
    Volker Barthelmann
    Erich Novak
    Klaus Ritter
    Advances in Computational Mathematics, 2000, 12 : 273 - 288
  • [39] The exponent of discrepancy of sparse grids is at least 2.1933
    Plaskota, L
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (01) : 3 - 24
  • [40] Multigrid for discrete differential forms on sparse grids
    Gradinaru, V
    Hiptmair, R
    COMPUTING, 2003, 71 (01) : 17 - 42