On the dispersion of sparse grids

被引:14
|
作者
Krieg, David [1 ]
机构
[1] Univ Jena, Math Inst, Ernst Abbe Pl 2, D-07740 Jena, Germany
关键词
Dispersion; Largest empty box; Sparse grid; High dimensional problems;
D O I
10.1016/j.jco.2017.11.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any d N and epsilon is an element of (0, 1), we present a point set in the d-dimensional unit cube [0, 1](d) that intersects every axis-aligned box of volume greater than epsilon. This point set is very easy to handle and in a vast range for epsilon and d, we do not know any smaller set with this property. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 50 条
  • [1] Sparse grids, adaptivity, and symmetry
    Yserentant, H.
    COMPUTING, 2006, 78 (03) : 195 - 209
  • [2] Sparse Grids, Adaptivity, and Symmetry
    H. Yserentant
    Computing, 2006, 78 : 195 - 209
  • [3] Sampling inequalities for sparse grids
    Rieger, Christian
    Wendland, Holger
    NUMERISCHE MATHEMATIK, 2017, 136 (02) : 439 - 466
  • [4] Sampling inequalities for sparse grids
    Christian Rieger
    Holger Wendland
    Numerische Mathematik, 2017, 136 : 439 - 466
  • [5] Integral operators on sparse grids
    Knapek, S
    Koster, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1794 - 1809
  • [6] Spline interpolation on sparse grids
    Sickel, Winfried
    Ullrich, Tino
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 337 - 383
  • [7] Data mining with sparse grids
    Garcke, J
    Griebel, M
    Thess, M
    COMPUTING, 2001, 67 (03) : 225 - 253
  • [8] Data Mining with Sparse Grids
    J. Garcke
    M. Griebel
    M. Thess
    Computing, 2001, 67 : 225 - 253
  • [9] Sparse grids for the Schrodinger equation
    Griebel, Michael
    Hamaekers, Jan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2007, 41 (02) : 215 - 247
  • [10] Kernel Interpolation with Sparse Grids
    Yadav, Mohit
    Sheldon, Daniel
    Musco, Cameron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,