Machine learning prediction and tau-based screening identifies potential Alzheimer's disease genes relevant to immunity

被引:24
作者
Binder, Jessica [1 ]
Ursu, Oleg [1 ,7 ]
Bologa, Cristian [1 ]
Jiang, Shanya [2 ]
Maphis, Nicole [2 ]
Dadras, Somayeh [2 ]
Chisholm, Devon [2 ]
Weick, Jason [3 ]
Myers, Orrin [1 ]
Kumar, Praveen [1 ]
Yang, Jeremy J. [1 ]
Bhaskar, Kiran [2 ,4 ]
Oprea, Tudor, I [1 ,5 ,6 ,8 ]
机构
[1] Univ New Mexico, Dept Internal Med, Sch Med, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Mol Genet & Microbiol, Sch Med, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Neurosci, Sch Med, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Dept Neurol, Sch Med, Albuquerque, NM 87131 USA
[5] Gothenburg Univ, Dept Rheumatol & Inflammat Res, Inst Med, Sahlgrenska Acad, S-40530 Gothenburg, Sweden
[6] Univ Copenhagen, Novo Nordisk Fdn, Fac Hlth & Med Sci, Ctr Prot Res, DK-2200 Copenhagen, Denmark
[7] Merck & Co Inc, Computat & Struct Chem, 2000 Galloping Hill Rd, Kenilworth, NJ 07033 USA
[8] Roivant Discovery Sci Inc, 451 D St, Boston, MA 02210 USA
关键词
NMDA RECEPTORS; RISK-FACTOR; PROTEIN; CELL; EXPRESSION; BRAIN; PHOSPHORYLATION; SUPPRESSOR; CONTRIBUTE; TRANSPORT;
D O I
10.1038/s42003-022-03068-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
With increased research funding for Alzheimer's disease (AD) and related disorders across the globe, large amounts of data are being generated. Several studies employed machine learning methods to understand the ever-growing omics data to enhance early diagnosis, map complex disease networks, or uncover potential drug targets. We describe results based on a Target Central Resource Database protein knowledge graph and evidence paths transformed into vectors by metapath matching. We extracted features between specific genes and diseases, then trained and optimized our model using XGBoost, termed MPxgb(AD). To determine our MPxgb(AD) prediction performance, we examined the top twenty predicted genes through an experimental screening pipeline. Our analysis identified potential AD risk genes: FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2. FRRS1 and FAM92B are considered dark genes, while CTRAM, SCGB3A1, and TMEFF2 are connected to TREM2-TYROBP, IL-1 beta-TNF alpha, and MTOR-APP AD-risk nodes, suggesting relevance to the pathogenesis of AD. Jessica Binder et al. developed a machine learning model to discover potential drug targets for Alzheimer's disease. They validated their 20 top candidates in several in vitro models, and highlight FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2 as potential AD risk genes.
引用
收藏
页数:15
相关论文
共 101 条
  • [2] The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
    Ardlie, Kristin G.
    DeLuca, David S.
    Segre, Ayellet V.
    Sullivan, Timothy J.
    Young, Taylor R.
    Gelfand, Ellen T.
    Trowbridge, Casandra A.
    Maller, Julian B.
    Tukiainen, Taru
    Lek, Monkol
    Ward, Lucas D.
    Kheradpour, Pouya
    Iriarte, Benjamin
    Meng, Yan
    Palmer, Cameron D.
    Esko, Tonu
    Winckler, Wendy
    Hirschhorn, Joel N.
    Kellis, Manolis
    MacArthur, Daniel G.
    Getz, Gad
    Shabalin, Andrey A.
    Li, Gen
    Zhou, Yi-Hui
    Nobel, Andrew B.
    Rusyn, Ivan
    Wright, Fred A.
    Lappalainen, Tuuli
    Ferreira, Pedro G.
    Ongen, Halit
    Rivas, Manuel A.
    Battle, Alexis
    Mostafavi, Sara
    Monlong, Jean
    Sammeth, Michael
    Mele, Marta
    Reverter, Ferran
    Goldmann, Jakob M.
    Koller, Daphne
    Guigo, Roderic
    McCarthy, Mark I.
    Dermitzakis, Emmanouil T.
    Gamazon, Eric R.
    Im, Hae Kyung
    Konkashbaev, Anuar
    Nicolae, Dan L.
    Cox, Nancy J.
    Flutre, Timothee
    Wen, Xiaoquan
    Stephens, Matthew
    [J]. SCIENCE, 2015, 348 (6235) : 648 - 660
  • [3] DrugCentral 2021 supports drug discovery and repositioning
    Avram, Sorin
    Bologa, Cristian G.
    Holmes, Jayme
    Bocci, Giovanni
    Wilson, Thomas B.
    Dac-Trung Nguyen
    Curpan, Ramona
    Halip, Liliana
    Bora, Alina
    Yang, Jeremy J.
    Knockel, Jeffrey
    Sirimulla, Suman
    Ursu, Oleg
    Oprea, Tudor, I
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D1160 - D1169
  • [4] Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro
    Bardy, Cedric
    van den Hurk, Mark
    Eames, Tameji
    Marchand, Cynthia
    Hernandez, Ruben V.
    Kellogg, Mariko
    Gorris, Mark
    Galet, Ben
    Palomares, Vanessa
    Brown, Joshua
    Bang, Anne G.
    Mertens, Jerome
    Boehnke, Lena
    Boyer, Leah
    Simon, Suzanne
    Gage, Fred H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (20) : E2725 - E2734
  • [5] Herpes Simplex Virus, Alzheimer's Disease and a Possible Role for Rab GTPases
    Bearer, Elaine L.
    Wu, Chengbiao
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2019, 7
  • [6] Bhandari T., 2020, Investigational drugs didn't slow memory loss, cognitive decline in rare, inherited Alzheimer's, initial analysis indicates
  • [7] Regulation of Tau Pathology by the Microglial Fractalkine Receptor
    Bhaskar, Kiran
    Konerth, Megan
    Kokiko-Cochran, Olga N.
    Cardona, Astrid
    Ransohoff, Richard M.
    Lamb, Bruce T.
    [J]. NEURON, 2010, 68 (01) : 19 - 31
  • [8] The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the ceff-surface receptor CRTAM
    Boles, KS
    Barchet, W
    Diacovo, T
    Cella, M
    Colonna, M
    [J]. BLOOD, 2005, 106 (03) : 779 - 786
  • [9] ABNORMAL TAU-PHOSPHORYLATION AT SER(396) IN ALZHEIMERS-DISEASE RECAPITULATES DEVELOPMENT AND CONTRIBUTES TO REDUCED MICROTUBULE-BINDING
    BRAMBLETT, GT
    GOEDERT, M
    JAKES, R
    MERRICK, SE
    TROJANOWSKI, JQ
    LEE, VMY
    [J]. NEURON, 1993, 10 (06) : 1089 - 1099
  • [10] The Gene Ontology Resource: 20 years and still GOing strong
    Carbon, S.
    Douglass, E.
    Dunn, N.
    Good, B.
    Harris, N. L.
    Lewis, S. E.
    Mungall, C. J.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Hartline, E.
    Fey, P.
    Thomas, P. D.
    Albou, L. P.
    Ebert, D.
    Kesling, M. J.
    Mi, H.
    Muruganujian, A.
    Huang, X.
    Poudel, S.
    Mushayahama, T.
    Hu, J. C.
    LaBonte, S. A.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Fexova, S.
    Garapati, P.
    Jones, T. E. M.
    Marygold, S. J.
    Millburn, G. H.
    Rey, A. J.
    Trovisco, V.
    dos Santos, G.
    Emmert, D. B.
    Falls, K.
    Zhou, P.
    Goodman, J. L.
    Strelets, V. B.
    Thurmond, J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Acencio, M. L.
    Kuiper, M.
    Laegreid, A.
    Logie, C.
    Lovering, R. C.
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D330 - D338