Heterointegrated III-V/Si Distributed Feedback Lasers

被引:0
|
作者
Duprez, Helene [1 ]
Descos, Antoine [1 ]
Ferrotti, Thomas [1 ,2 ]
Jany, Christophe [1 ]
Harduin, Julie [1 ]
Myko, Andre [1 ]
Sciancalepore, Corrado [1 ]
Seassal, Christian [3 ]
Ben-Bakir, Badhise [1 ]
机构
[1] Univ Grenoble Alpes, CEA Grenoble, CEA, LETI, F-38054 Grenoble, France
[2] ST Microelect, F-38920 Crolles, France
[3] Univ Lyon, Ecole Cent Lyon, INL, CNRS,UMR CNRS 5270, F-69134 Ecully, France
关键词
Semiconductor lasers; silicon photonics; distributed feedback lasers; photonic integrated circuits (PIC); SILICON;
D O I
10.1117/12.2079016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With an ever-growing transmission data rate, electronic components reach a limit silicon photonics may overcome. This technology provides integrated circuits in which light is generated within hybrid III-V/Si lasers and modulated to transmit the desired information through silicon waveguides to input/output active/passive components such as wavelength (de-)multiplexers, fiber couplers and photodetectors. Nevertheless, high aggregate bandwidth through wavelength division multiplexing demands for spectrally narrowband lasers with high side-mode suppression ratio (SMSR). Distributed feedback (DFB) lasers offer such a great selectivity. We report hybrid III-V on Silicon DFB lasers emitting at 1550nm and 1310nm. The III-V material is wafer-bonded to patterned silicon-on-insulator (SOI) wafers. The laser cavity is obtained by etching a grating in the silicon, while silicon adiabatic tapers are used to couple light from/to III-V waveguides to/from the passive silicon circuitry, in order to maximize the laser available gain and output power. Gratings are either etched on the top of the silicon waveguide or on its sides, thus relaxing the taper dimension constraint. At 1550nm, the investigated device operates under continuous wave regime with a room temperature threshold current of 70mA, an SMSR as high as 45dB and an optical power in the waveguide higher than 40mW. At 1310nm, a threshold current of 35mA, an SMSR of 45dB and an optical power coupled into a single-mode fiber higher than 1.5mW are demonstrated.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] III-V semiconductor nanowire lasers
    Mokkapati, Sudha
    Saxena, Dhruv
    Nian-Jiang
    Gao, Qian
    Tan, Hark Hoe
    Jagadish, Chennupati
    2014 24TH IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC 2014), 2014, : 217 - 218
  • [32] Hybrid III-V/Silicon Lasers
    Kaspar, P.
    Jany, C.
    Le Liepvre, A.
    Accard, A.
    Lamponi, M.
    Make, D.
    Levaufre, G.
    Girard, N.
    Lelarge, F.
    Shen, A.
    Charbonnier, P.
    Mallecot, F.
    Duan, G. -H.
    Gentner, J. -L.
    Fedeli, J. -M.
    Olivier, S.
    Descos, A.
    Ben Bakir, B.
    Messaoudene, S.
    Bordel, D.
    Malhouitre, S.
    Kopp, C.
    Menezo, S.
    SILICON PHOTONICS AND PHOTONIC INTEGRATED CIRCUITS IV, 2014, 9133
  • [33] Si CMOS Contacts to III-V Materials for Monolithic Integration of III-V and Si Devices
    Pacella, N. Y.
    Bulsara, M. T.
    Fitzgerald, E. A.
    SILICON COMPATIBLE MATERIALS, PROCESSES, AND TECHNOLOGIES FOR ADVANCED INTEGRATED CIRCUITS AND EMERGING APPLICATIONS, 2011, 35 (02): : 225 - 229
  • [34] Comparison of III-V/Si on-chip lasers with etched facet reflectors
    Lee, Chee-Wei
    Ng, Doris Keh-Ting
    Ren, Min
    Fu, Yuan-Hsing
    Kay, Anthony Yew Seng
    Krishnamurthy, Vivek
    Pu, Jing
    Tan, Ai Ling
    Bin Choo, Soo
    Wang, Qian
    APPLIED OPTICS, 2017, 56 (17) : 5086 - 5091
  • [35] The metal grating design of plasmonic hybrid III-V/Si evanescent lasers
    Hsu, Min-Hsiang
    Lin, Chien-Chung
    Kuo, Hao-Chung
    OPTICS EXPRESS, 2013, 21 (17): : 20210 - 20219
  • [36] Improved light transmission for III-V lasers monolithically integrated on Si platforms
    Paparella, Michele
    Remis, Andres
    Grande, Marco
    Taliercio, Thierry
    Cerutti, Laurent
    Rodriguez, Jean-Baptiste
    Tournie, Eric
    OPTICS EXPRESS, 2024, 32 (22): : 38994 - 39004
  • [37] Self-aligned III-V MOSFETs heterointegrated on a 200 mm Si substrate using an industry standard process flow
    Hill, R. J. W.
    Park, C.
    Barnett, J.
    Price, J.
    Huang, J.
    Goel, N.
    Loh, W. Y.
    Oh, J.
    Smith, C. E.
    Kirsch, P.
    Majhi, P.
    Jammy, R.
    2010 INTERNATIONAL ELECTRON DEVICES MEETING - TECHNICAL DIGEST, 2010,
  • [38] Monolithic III-V/Si Integration
    Fitzgerald, E. A.
    Bulsara, M. T.
    Bai, Y.
    Cheng, C.
    Liu, W. K.
    Lubyshev, D.
    Fastenau, J. M.
    Wu, Y.
    Urtega, M.
    Ha, W.
    Bergman, J.
    Brar, B.
    Drazek, C.
    Daval, N.
    Letertre, F.
    Hoke, W. E.
    LaRoche, J. R.
    Herrick, K. J.
    Kazior, T. E.
    2008 9TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1-4, 2008, : 1413 - +
  • [39] III-V compound materials and lasers on silicon
    Yang, Wenyu
    Li, Yajie
    Meng, Fangyuan
    Yu, Hongyan
    Wang, Mengqi
    Wang, Pengfei
    Luo, Guangzhen
    Zhou, Xuliang
    Pan, Jiaoqing
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (10)
  • [40] Monolithic III-V/Si Integration
    Fitzgerald, E. A.
    Bulsara, M. T.
    Bai, Y.
    Cheng, C.
    Liu, W. K.
    Lubyshev, D.
    Fastenau, J. M.
    Wu, Y.
    Urtega, M.
    Ha, W.
    Bergman, J.
    Brar, B.
    Drazek, C.
    Daval, N.
    Letertre, F.
    Hoke, W. E.
    LaRoche, J. R.
    Herrick, K. J.
    Kazior, T. E.
    SIGE, GE, AND RELATED COMPOUNDS 3: MATERIALS, PROCESSING, AND DEVICES, 2008, 16 (10): : 1015 - +