Heterointegrated III-V/Si Distributed Feedback Lasers

被引:0
作者
Duprez, Helene [1 ]
Descos, Antoine [1 ]
Ferrotti, Thomas [1 ,2 ]
Jany, Christophe [1 ]
Harduin, Julie [1 ]
Myko, Andre [1 ]
Sciancalepore, Corrado [1 ]
Seassal, Christian [3 ]
Ben-Bakir, Badhise [1 ]
机构
[1] Univ Grenoble Alpes, CEA Grenoble, CEA, LETI, F-38054 Grenoble, France
[2] ST Microelect, F-38920 Crolles, France
[3] Univ Lyon, Ecole Cent Lyon, INL, CNRS,UMR CNRS 5270, F-69134 Ecully, France
来源
INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XIX | 2015年 / 9365卷
关键词
Semiconductor lasers; silicon photonics; distributed feedback lasers; photonic integrated circuits (PIC); SILICON;
D O I
10.1117/12.2079016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With an ever-growing transmission data rate, electronic components reach a limit silicon photonics may overcome. This technology provides integrated circuits in which light is generated within hybrid III-V/Si lasers and modulated to transmit the desired information through silicon waveguides to input/output active/passive components such as wavelength (de-)multiplexers, fiber couplers and photodetectors. Nevertheless, high aggregate bandwidth through wavelength division multiplexing demands for spectrally narrowband lasers with high side-mode suppression ratio (SMSR). Distributed feedback (DFB) lasers offer such a great selectivity. We report hybrid III-V on Silicon DFB lasers emitting at 1550nm and 1310nm. The III-V material is wafer-bonded to patterned silicon-on-insulator (SOI) wafers. The laser cavity is obtained by etching a grating in the silicon, while silicon adiabatic tapers are used to couple light from/to III-V waveguides to/from the passive silicon circuitry, in order to maximize the laser available gain and output power. Gratings are either etched on the top of the silicon waveguide or on its sides, thus relaxing the taper dimension constraint. At 1550nm, the investigated device operates under continuous wave regime with a room temperature threshold current of 70mA, an SMSR as high as 45dB and an optical power in the waveguide higher than 40mW. At 1310nm, a threshold current of 35mA, an SMSR of 45dB and an optical power coupled into a single-mode fiber higher than 1.5mW are demonstrated.
引用
收藏
页数:8
相关论文
共 19 条
[11]   Computer Systems Based on Silicon Photonic Interconnects [J].
Krishnamoorthy, Ashok V. ;
Ho, Ron ;
Zheng, Xuezhe ;
Schwetman, Herb ;
Lexau, Jon ;
Koka, Pranay ;
Li, GuoLiang ;
Shubin, Ivan ;
Cunningham, John E. .
PROCEEDINGS OF THE IEEE, 2009, 97 (07) :1337-1361
[12]   High speed silicon Mach-Zehnder modulator [J].
Liao, L ;
Samara-Rubio, D ;
Morse, M ;
Liu, AS ;
Hodge, D ;
Rubin, D ;
Keil, UD ;
Franck, T .
OPTICS EXPRESS, 2005, 13 (08) :3129-3135
[13]   A continuous-wave Raman silicon laser [J].
Rong, HS ;
Jones, R ;
Liu, AS ;
Cohen, O ;
Hak, D ;
Fang, A ;
Paniccia, M .
NATURE, 2005, 433 (7027) :725-728
[14]  
Sciancalepore C., 2014, IEEE PHOTON TECHNOL
[15]   Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding [J].
Stankovic, Stevan ;
Jones, Richard ;
Sysak, Matthew N. ;
Heck, John M. ;
Roelkens, Gunther ;
Van Thourhout, Dries .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (23) :2155-2158
[16]   Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system [J].
Sun, Xiankai ;
Liu, Hsi-Chun ;
Yariv, Amnon .
OPTICS LETTERS, 2009, 34 (03) :280-282
[17]   Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser [J].
Sysak, Matthew N. ;
Park, Hyundai ;
Fang, Alexander W. ;
Bowers, John E. ;
Jones, Richard ;
Cohen, Oded ;
Raday, Omri ;
Paniccia, Mario .
OPTICS EXPRESS, 2007, 15 (23) :15041-15046
[18]  
Van Campenhout J., OPT FIB COMM C
[19]   Germanium avalanche receiver for low power interconnects [J].
Virot, Leopold ;
Crozat, Paul ;
Fedeli, Jean-Marc ;
Hartmann, Jean-Michel ;
Marris-Morini, Delphine ;
Cassan, Eric ;
Boeuf, Frederic ;
Vivien, Laurent .
NATURE COMMUNICATIONS, 2014, 5