A new Hermite-Hadamard type inequality for coordinate convex function

被引:3
作者
Cao, Haisong [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou, Peoples R China
关键词
Hermite-Hadamard's inequality; Convex function; Coordinates;
D O I
10.1186/s13660-020-02428-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish a new Hermite-Hadamard type inequality for the coordinate convex function by constructing two monotonic sequences. The given result is the generalization and improvement of some previously obtained results.
引用
收藏
页数:10
相关论文
共 22 条
[1]   On the Hadamard's type inequalities for co-ordinated convex functions via fractional integrals [J].
Akkurt, Abdullah ;
Sarikaya, Mehmet Zeki ;
Budak, Huseyin ;
Yildirim, Huseyin .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2017, 29 (03) :380-387
[2]  
Alomari M., 2008, INT MATH FORUM, V3, P1965
[3]  
Alomari M., 2008, Int. J. Contemp. Math. Sci., V3, P1557
[4]   Petrovic-Type Inequalities for Harmonic h-convex Functions [J].
Baloch, Imran Abbas ;
Chu, Yu-Ming .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[5]  
Bessenyei M, 2003, MATH INEQUAL APPL, V6, P379
[6]   A NOTE ON THE HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS ON THE CO-ORDINATES [J].
Chen, Feixiang .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04) :915-923
[7]   Hermite-Hadamard's type inequalities for convex functions of selfadjoint operators in Hilbert spaces [J].
Dragomir, S. S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) :1503-1515
[8]   Hermite-Hadamard's type inequalities for operator convex functions [J].
Dragomir, S. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :766-772
[9]  
Dragomir S.S., 1999, DEMONSTR MATH, V32, P687, DOI [DOI 10.1515/dema-1999-0403, 10.1515/dema-1999-0403, DOI 10.1515/DEMA-1999-0403]
[10]   On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane [J].
Dragomir, SS .
TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (04) :775-788