MicroRNA identification based on sequence and structure alignment

被引:196
作者
Wang, XW [1 ]
Zhang, J [1 ]
Gu, J [1 ]
He, T [1 ]
Zhang, XG [1 ]
Li, YD [1 ]
Li, F [1 ]
机构
[1] Tsinghua Univ, Dept Automat, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1093/bioinformatics/bti562
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: MicroRNAs (miRNA) are similar to 22 nt long non-coding RNAs that are derived from larger hairpin RNA precursors and play important regulatory roles in both animals and plants. The short length of the miRNA sequences and relatively low conservation of pre-miRNA sequences restrict the conventional sequence-alignment-based methods to finding only relatively close homologs. On the other hand, it has been reported that miRNA genes are more conserved in the secondary structure rather than in primary sequences. Therefore, secondary structural features should be more fully exploited in the homologue search for new miRNA genes. Results: In this paper, we present a novel genome-wide computational approach to detect miRNAs in animals based on both sequence and structure alignment. Experiments show this approach has higher sensitivity and comparable specificity than other reported homologue searching methods. We applied this method on Anopheles gambiae and detected 59 new miRNA genes.
引用
收藏
页码:3610 / 3614
页数:5
相关论文
共 36 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[3]   MicroRNAs: At the root of plant development? [J].
Bartel, B ;
Bartel, DP .
PLANT PHYSIOLOGY, 2003, 132 (02) :709-717
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[6]   An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks [J].
Gaunt, MW ;
Miles, MA .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (05) :748-761
[7]   Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles [J].
Gautheret, D ;
Lambert, A .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 313 (05) :1003-1011
[8]   The microRNA Registry [J].
Griffiths-Jones, S .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D109-D111
[9]   Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C-elegans developmental timing [J].
Grishok, A ;
Pasquinelli, AE ;
Conte, D ;
Li, N ;
Parrish, S ;
Ha, I ;
Baillie, DL ;
Fire, A ;
Ruvkun, G ;
Mello, CC .
CELL, 2001, 106 (01) :23-34
[10]   An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J].
Hammond, SM ;
Bernstein, E ;
Beach, D ;
Hannon, GJ .
NATURE, 2000, 404 (6775) :293-296