Image-based Kinship Verification using Fusion Convolutional Neural Network

被引:0
|
作者
Rachmadi, Reza Fuad [1 ]
Purnama, I. Ketut Eddy [1 ]
Nugroho, Supeno Mardi Susiki [1 ]
Suprapto, Yoyon Kusnendar [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Fac Elect Technol, Dept Comp Engn, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
关键词
image-based kinship verification; fusion network; angular softmax;
D O I
10.1109/iwcia47330.2019.8955092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the performance of fusion convolutional neural network (CNN) classifier for image-based kinship verification problem. Two fusion configurations were used for the experiments, early fusion CNN classifier and late fusion CNN classifier. The early fusion configuration of the CNN classifier takes combined two face images as input for verification. The advantages of early fusion configuration are no heavy changes in the classifier architecture and only the first layer that have a different filter size. The late fusion configuration of the CNN classifier formed by creating dual CNN network for extracting the deep features of each face image and classify the kinship relationship using two fully-connected layers. The softmax and angular softmax (a-softmax) loss are used for evaluating the network in the training process with fine-tuning strategy. The classifier then evaluated using large-scale FIW (Family in the Wild) kinship verification dataset consists of 1,000 family and 11 different kinship relationship. Experiments using the 5-fold configuration on FIW dataset show that the ensemble of fusion CNN classifier produces comparable performance with several different state-of-the-art methods.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [21] A Spectrogram Image-Based Network Anomaly Detection System Using Deep Convolutional Neural Network
    Khan, Adnan Shahid
    Ahmad, Zeeshan
    Abdullah, Johari
    Ahmad, Farhan
    IEEE ACCESS, 2021, 9 : 87079 - 87093
  • [22] Deep Feature Learning for Image-Based Kinship Verification
    Zhao, Shuhuan
    Wang, Chunrong
    Liu, Shuaiqi
    Cheng, Hongfang
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 130 - 142
  • [23] Microstrip antenna modelling based on image-based convolutional neural network
    Fu, Hao
    Tian, Yubo
    Meng, Fei
    Li, Qing
    Ren, Xuefeng
    ELECTRONICS LETTERS, 2023, 59 (16)
  • [24] Image-Based Learning to Measure Traffic Density Using a Deep Convolutional Neural Network
    Chung, Jiyong
    Sohn, Keemin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (05) : 1670 - 1675
  • [25] Image-based failure detection for material extrusion process using a convolutional neural network
    Hyungjung Kim
    Hyunsu Lee
    Ji-Soo Kim
    Sung-Hoon Ahn
    The International Journal of Advanced Manufacturing Technology, 2020, 111 : 1291 - 1302
  • [26] UAV Image-based Forest Fire Detection Approach Using Convolutional Neural Network
    Chen, Yanhong
    Zhang, Youmin
    Xin, Jing
    Wang, Guangyi
    Mu, Lingxia
    Yi, Yingmin
    Liu, Han
    Liu, Ding
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 2118 - 2123
  • [27] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Azhar Imran
    Jianqiang Li
    Yan Pei
    Faheem Akhtar
    Tariq Mahmood
    Li Zhang
    The Visual Computer, 2021, 37 : 2407 - 2417
  • [28] Image-based pencil drawing synthesized using convolutional neural network feature maps
    Xiuxia Cai
    Bin Song
    Machine Vision and Applications, 2018, 29 : 503 - 512
  • [29] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Imran, Azhar
    Li, Jianqiang
    Pei, Yan
    Akhtar, Faheem
    Mahmood, Tariq
    Zhang, Li
    VISUAL COMPUTER, 2021, 37 (08): : 2407 - 2417
  • [30] Image-based facial emotion recognition using convolutional neural network on emognition dataset
    Agung, Erlangga Satrio
    Rifai, Achmad Pratama
    Wijayanto, Titis
    SCIENTIFIC REPORTS, 2024, 14 (01):