Automatic trading method based on piecewise aggregate approximation and multi-swarm of improved self-adaptive particle swarm optimization with validation

被引:18
作者
Brasileiro, Rodrigo C. [1 ]
Souza, Victor L. F. [1 ]
Oliveira, Adriano L. I. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N, BR-50740560 Recife, PE, Brazil
关键词
Multi-swarm optimization; Pattern discovery; Data mining; Time series representation; Stock market; Particle swarm optimization; FINANCIAL-MARKETS; STOCK; SYSTEM;
D O I
10.1016/j.dss.2017.10.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Financial time series represent the stock prices over time and exhibit behavior similar to a data stream. Many works report on the use of data mining techniques to predict the future direction of stock prices and to discover patterns in the time series data to provide decision support for trading operations. Traditional optimization methods do not take into account the possibility that the function to be optimized, namely, the final financial balance for operations considering some stock, may have multiple peaks, i.e., be represented by multimodal functions. However, multimodality is a known feature of real-world financial time series optimization problems. To deal with this issue, this article proposes the PAA-MS-IDPSO-V approach (Piece wise Aggregate Approximation - Multi-Swarm of Improved Self-adaptive Particle Swarm Optimization with Validation). The proposed method aims to find patterns in financial time series to support investment decisions. The approach uses multi-swarms to obtain a better particle initialization for the final optimization phase since it aims to tackle multimodal problems. Furthermore, it uses a validation set with early stopping to avoid overfitting. The patterns discovered by the method are used together with investment rules to support decisions and thus help investors to maximize the profit in their operations in the stock market. The experiments reported in this paper compare the results obtained by the proposed model with the Buy-and-Hold, PM-IDPSO approaches and another approach found in the literature. We report on experiments conducted with S&P100 index stocks and using the Friedman Non-Parametric Test with the Nemenyi post-hoc Test both with 95% confidence level. The results show that the proposed model outperformed the competing methods and was able to considerably reduce the variance for all stocks. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 50 条
  • [31] Self-adaptive mix of particle swarm methodologies for constrained optimization
    Elsayed, Saber M.
    Sarker, Ruhul A.
    Mezura-Montes, Efren
    INFORMATION SCIENCES, 2014, 277 : 216 - 233
  • [32] Enhanced self-adaptive search capability Particle Swarm Optimization
    Hu Juan
    Yu Laihang
    Zou Kaiqi
    ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 3, PROCEEDINGS, 2008, : 49 - 53
  • [33] A Self-adaptive Rotationally Invariant Particle Swarm Optimization for Global Optimization
    Dong, Ting
    Wang, Haoxin
    Ding, Wenbo
    Shi, Libao
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 1470 - 1478
  • [34] Self-adaptive particle swarm optimization: a review and analysis of convergence
    Harrison, Kyle Robert
    Engelbrecht, Andries P.
    Ombuki-Berman, Beatrice M.
    SWARM INTELLIGENCE, 2018, 12 (03) : 187 - 226
  • [35] Self-adaptive particle swarm optimization: a review and analysis of convergence
    Kyle Robert Harrison
    Andries P. Engelbrecht
    Beatrice M. Ombuki-Berman
    Swarm Intelligence, 2018, 12 : 187 - 226
  • [36] A New Multi-swarm Multi-objective Particle Swarm Optimization Based on Pareto Front Set
    Sun, Yanxia
    van Wyk, Barend Jacobus
    Wang, Zenghui
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 203 - +
  • [37] Self-adaptive mutation differential evolution algorithm based on particle swarm optimization
    Wang, Shihao
    Li, Yuzhen
    Yang, Hongyu
    APPLIED SOFT COMPUTING, 2019, 81
  • [38] A modified hybrid particle swarm optimization based on comprehensive learning and dynamic multi-swarm strategy
    Wang, Rui
    Hao, Kuangrong
    Chen, Lei
    Liu, Xiaoyan
    Zhu, Xiuli
    Zhao, Chenwei
    SOFT COMPUTING, 2024, 28 (05) : 3879 - 3903
  • [39] A modified hybrid particle swarm optimization based on comprehensive learning and dynamic multi-swarm strategy
    Rui Wang
    Kuangrong Hao
    Lei Chen
    Xiaoyan Liu
    Xiuli Zhu
    Chenwei Zhao
    Soft Computing, 2024, 28 : 3879 - 3903
  • [40] An adaptive dynamic multi-swarm particle swarm optimization with stagnation detection and spatial exclusion for solving continuous optimization problems
    Yang, Xu
    Li, Hongru
    Huang, Youhe
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123