Short-term traffic flow prediction in smart multimedia system for Internet of Vehicles based on deep belief network

被引:62
|
作者
Kong, Fanhui [1 ]
Li, Jian [1 ]
Jiang, Bin [2 ,3 ]
Song, Houbing [3 ]
机构
[1] Tianjin Univ Technol, Sch Management, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[3] Embry Riddle Aeronaut Univ, Dept Elect Comp Software & Syst Engn, Daytona Beach, FL 32114 USA
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2019年 / 93卷
关键词
Chaotic time series prediction; Traffic flow data in multimedia system; Internet of Vehicles (IoVs); Restricted Boltzmann Machine (RBM); NEURAL-NETWORK; MODEL; TIME; MACHINES;
D O I
10.1016/j.future.2018.10.052
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the multimedia system for Internet of Vehicles (IoVs), accurate traffic flow information processing and feedback can give drivers guidance. In traditional information processing for IoVs, few researches deal with traffic flow information processing by deep learning. Specially, most of the existing prediction technologies adopt shallow neural network, and their models for chaotic time series are prone to be restricted by multiple parameters. Over the last few years, the dawning of the big data era creates opportunities for the intelligent traffic control and management. In this paper, we take Restricted Boltzmann Machine (RBM) as the method for traffic flow prediction, which is a typical algorithm based on deep learning architecture. Considering traffic big data aggregation in IoVs, multimedia technologies provide enough real sample data for model training. RBM constructs the long-term model of polymorphic for chaotic time series, using phase space reconstruction to recognize the data. To the best of our knowledge, it is the first time apply RBM model to short-term traffic flow prediction, which can improve the performance of multimedia system in IoVs. Moreover, experimental results show that the proposed method has superior performance than traditional shallow neural network prediction methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:460 / 472
页数:13
相关论文
共 50 条
  • [1] Short-term traffic flow prediction of road network based on deep learning
    Han, Lei
    Huang, Yi-Shao
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (06) : 495 - 503
  • [2] Deep learning for short-term traffic flow prediction
    Polson, Nicholas G.
    Sokolov, Vadim O.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 79 : 1 - 17
  • [3] A Multifeature Fusion Short-Term Traffic Flow Prediction Model Based on Deep Learnings
    Chai, Chunxu
    Ren, Chuanxiang
    Yin, Changchang
    Xu, Hui
    Meng, Qiu
    Teng, Juan
    Gao, Ge
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [4] Short-Term Traffic Flow Prediction: A Method of Combined Deep Learnings
    Ren, Chuanxiang
    Chai, Chunxu
    Yin, Changchang
    Ji, Haowei
    Cheng, Xuezhen
    Gao, Ge
    Zhang, Heng
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [5] Traffic Flow Prediction Based on Deep Learning in Internet of Vehicles
    Chen, Chen
    Liu, Ziye
    Wan, Shaohua
    Luan, Jintai
    Pei, Qingqi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3776 - 3789
  • [6] Survey of short-term traffic flow prediction based on LSTM
    Ma, Changxi
    Liu, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025, 36 (02):
  • [7] Short-Term Traffic Flow Prediction Based on Bayesian Fusion
    Zhang, Yu-Ning
    Wang, Jing-Sheng
    Lu, Hao
    Guo, Hao-Yu
    Zuo, Xiao-Li
    Zhou, Yang
    Lu, Can
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2020 - EMERGING TECHNOLOGIES AND THEIR IMPACTS, 2020, : 152 - 162
  • [8] A deep network with analogous self-attention for short-term traffic flow prediction
    Zhang, Zhao
    Jiao, Xiaohong
    IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (07) : 902 - 915
  • [9] Short-Term Load Interval Prediction Using a Deep Belief Network
    Zhang, Xiaoyu
    Shu, Zhe
    Wang, Rui
    Zhang, Tao
    Zha, Yabing
    ENERGIES, 2018, 11 (10)
  • [10] Short-term prediction of wind power using an improved kernel based optimized deep belief network
    Sarangi, Snigdha
    Dash, Pradipta Kishore
    Bisoi, Ranjeeta
    ENERGY CONVERSION AND MANAGEMENT, 2024, 316