Efficient phosphodiester bond cleavage activity by the hammerhead ribozyme requires divalent cations. Toward understanding this metal ion requirement, the Mn2+-binding properties of hammerhead model ribozymes have been investigated under dilute solution conditions, using electron paramagnetic resonance spectroscopy (EPR) to detect free Mn2+ in the presence of added ribozyme. Numbers and affinities of bound Mn2+ were obtained at pH 7.8 (5 mc triethanolamine) in the presence of 0, 0.1, and 1.0 M NaCl for an RNA-DNA model consisting of a 13-nucleotide DNA "substrate" hybridized to a 34-nucleotide RNA "enzyme" [Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Nature 372, 68-74]. In 0.1 M NaCl, two classes of Mn2+ sites are found with n(1) = 3.7 +/- 0.4, K-d(1) = 4 +/- 1 mu M (type 1) and n(2) = 5.2 +/- 0.4, k(d(2)) = 460 +/- 130 mu M (type 2). The high-affinity type I sites are confirmed for an active RNA-RNA hybrid (34-nucleotide RNA enzyme: 13-nucleotide RNA substrate) by EPR measurements at low Mn2+ concentrations. Decreasing NaCl concentration results in an increased number of bound Mn2+ per hammerhead. By contrast, a binding titration in 1 M NaCl indicates that a single Mn2+ site with apparent K-d similar to 10 mu M is populated in low concentrations of Mn2+, and apparent cooperative effects at higher Mn2+ concentrations result in population of a similar total number of Mn2+ sites (n(t) = 8-10) as found in 0.1 M NaCl. Mn2+-dependent activity profiles are similar for the active RNA-RNA hybrid in 0.1 and 1 M NaCl. Correlation with binding affinities determined by EPR indicates that hammerhead activity in 0.1 M NaCl is only observed after all four of the high-affinity Mn2+ sites are occupied, rises with population of the type 2 sites, and is independent of Mn2+ concentrations corresponding to >8-9 Mn2+ bound per hammerhead. Equivalent measurements in 1 M NaCl demonstrate a rise in activity with the cooperative transition observed in the Mn2+ binding curve. These measurements indicate that, over this NaCl concentration range, hammerhead ribozyme activity is influenced by population of a specific set of divalent cation sites.