Wearable Sensor System for Multi-lead ECG Measurement

被引:0
作者
Caldara, M. [1 ]
Comotti, D. [1 ]
Gaioni, L. [1 ]
Pedrana, A. [1 ]
Pezzoli, M. [1 ]
Re, V. [1 ]
Traversi, G. [1 ]
机构
[1] Univ Bergamo, Dept Engn & Appl Sci, I-24044 Dalmine, BG, Italy
来源
2017 IEEE 14TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN) | 2017年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work is concerned with the development of a wireless low-power wearable system to be used for multi-lead ECG monitoring. Potential applications can range from sport and fitness to healthcare. The paper aims to present the architecture of the system and its performance, along with in-vivo results achieved with carbon based smart textiles.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 50 条
[31]   Localization of myocardial infarction with multi-lead ECG based on DenseNet [J].
Xiong, Peng ;
Xue, Yanping ;
Zhang, Jieshuo ;
Liu, Ming ;
Du, Haiman ;
Zhang, Hong ;
Hou, Zengguang ;
Wang, Hongrui ;
Liu, Xiuling .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 203
[32]   A model based approach for multi-lead ECG array layout selection [J].
Hintermuller, Christoph ;
Seger, Michael ;
Pfeifer, Bernhard ;
Fischer, Gerald ;
Tilg, Bernhard .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 1, 2006, 4190 :264-271
[33]   Block sparse multi-lead ECG compression exploiting between-lead collaboration [J].
Eftekharifar, Siavash ;
Rezaii, Tohid Yousefi ;
Beheshti, Soosan ;
Daneshvar, Sabalan .
IET SIGNAL PROCESSING, 2019, 13 (01) :46-55
[34]   A unified framework for multi-lead ECG characterization using Laplacian Eigenmaps [J].
Villa, Amalia ;
Ingelaere, Sebastian ;
Jacobs, Ben ;
Vandenberk, Bert ;
Van Huffel, Sabine ;
Willems, Rik ;
Varon, Carolina .
PHYSIOLOGICAL MEASUREMENT, 2023, 44 (07)
[35]   Qualitative and quantitative accuracy of a novel multi-lead mobile phone ECG [J].
Lim, M. C. L. ;
Lim, I. ;
Devaraj, L. M. .
EUROPEAN HEART JOURNAL SUPPLEMENTS, 2010, 12 (0A) :S26-S26
[36]   ECG Monitoring Based on Dynamic Compressed Sensing of Multi-Lead Signals [J].
Daponte, Pasquale ;
De Vito, Luca ;
Iadarola, Grazia ;
Picariello, Francesco .
SENSORS, 2021, 21 (21)
[37]   Classification of multi-lead ECG with deep residual convolutional neural networks [J].
Cai, Wenjie ;
Liu, Fanli ;
Xu, Bolin ;
Wang, Xuan ;
Hu, Shuaicong ;
Wang, Mingjie .
PHYSIOLOGICAL MEASUREMENT, 2022, 43 (07)
[38]   Classification of myocardial infarction with multi-lead ECG signals and deep CNN [J].
Baloglu, Ulas Baran ;
Talo, Muhammed ;
Yildirim, Ozal ;
Tan, Ru San ;
Acharya, U. Rajendra .
PATTERN RECOGNITION LETTERS, 2019, 122 :23-30
[39]   Convolution-Free Waveform Transformers for Multi-Lead ECG Classification [J].
Natarajan, Annamalai ;
Boverman, Gregory ;
Chang, Yale ;
Antonescu, Corneliu ;
Rubin, Jonathan .
2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
[40]   CORRELATION OF ECG FINDINGS WITH SYMPTOMS OF PALPITATIONS USING NOVEL MULTI-LEAD MOBILE PHONE ECG [J].
Lim, Michael C. L. .
HEART, 2010, 96 :A175-A175